skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chemical Diagnostics to Unveil Environments Enriched by First Stars
Abstract Unveiling the chemical fingerprints of the first (Population III, hereafter Pop III) stars is crucial for indirectly studying their properties and probing their massive nature. In particular, very massive Pop III stars explode as energetic pair-instability supernovae (PISNe), allowing their chemical products to escape in the diffuse medium around galaxies, opening the possibility to observe their fingerprints in distant gas clouds. Recently, threez> 6.3 absorbers with abundances consistent with an enrichment from PISNe have been observed with JWST. In this Letter, we present novel chemical diagnostics to uncover environments mainly imprinted by PISNe. Furthermore, we revise the JWST low-resolution measurements by analyzing the publicly available high-resolution X-Shooter spectra for two of these systems. Our results reconcile the chemical abundances of these absorbers with those from literature, which are found to be consistent with an enrichment dominated (>50% metals) by normal Pop II SNe. We show the power of our novel diagnostics in isolating environments uniquely enriched by PISNe from those mainly polluted by other Pop III and Pop II SNe. When the subsequent enrichment from Pop II SNe is included, however, we find that the abundances of PISN-dominated environments partially overlap with those predominantly enriched by other Pop III and Pop II SNe. We dub these areas confusion regions. Yet, the odd–even abundance ratios [Mg,Si/Al] are extremely effective in pinpointing PISN-dominated environments and allowed us to uncover, for the first time, an absorber consistent with a combined enrichment by a PISN and another Pop III SN for all the six measured elements.  more » « less
Award ID(s):
1751404
PAR ID:
10508855
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
967
Issue:
2
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L22
Size(s):
Article No. L22
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Low-metallicity very massive stars with an initial mass of ∼140–$$260\, \mathrm{M}_\odot$$ are expected to end their lives as pair-instability supernovae (PISNe). The abundance pattern resulting from a PISN differs drastically from regular core-collapse supernova (CCSN) models and is expected to be seen in very metal-poor (VMP) stars of [Fe/H] ≲ −2. Despite the routine discovery of many VMP stars, the unique abundance pattern expected from PISNe has not been unambiguously detected. The recently discovered VMP star LAMOST J1010 + 2358, however, shows a peculiar abundance pattern that is remarkably well fit by a PISN, indicating the potential first discovery of a bonafide star born from gas polluted by a PISN. In this paper, we study the detailed nucleosynthesis in a large set of models of CCSN of Pop III and Pop II star of metallicity [Fe/H] = −3 with masses ranging from 12 to $$30\, \mathrm{M}_\odot$$. We find that the observed abundance pattern in LAMOST J1010 + 2358 can be fit at least equally well by CCSN models of ∼12–$$14\, \mathrm{M}_\odot$$ that undergo negligible fallback following the explosion. The best-fitting CCSN models provide a fit that is even marginally better than the best-fitting PISN model. We conclude the measured abundance pattern in LAMOST J1010 + 2358 could have originated from a CCSN and therefore cannot be unambiguously identified with a PISN given the set of elements measured in it to date. We identify key elements that need to be measured in future detections in stars like LAMOST J1010 + 2358 that can differentiate between CCSN and PISN origin. 
    more » « less
  2. null (Ed.)
    ABSTRACT Carbon enhanced metal poor (CEMP)-no stars, a subset of CEMP stars ($$\rm [C/Fe]\ge 0.7$$ and $$\rm [Fe/H]\lesssim -1$$) have been discovered in ultra-faint dwarf (UFD) galaxies, with $$M_{\rm vir}\approx 10^8{\, \mathrm{ M}_\odot }$$ and $$M_{\ast }\approx 10^3-10^4{\, \mathrm{ M}_\odot }$$ at z = 0, as well as in the halo of the Milky Way (MW). These CEMP-no stars are local fossils that may reflect the properties of the first (Pop III) and second (Pop II) generation of stars. However, cosmological simulations have struggled to reproduce the observed level of carbon enhancement of the known CEMP-no stars. Here, we present new cosmological hydrodynamic zoom-in simulations of isolated UFDs that achieve a gas mass resolution of $$m_{\rm gas}\approx 60{\, \mathrm{ M}_\odot }$$. We include enrichment from Pop III faint supernovae (SNe), with ESN = 0.6 × 1051 erg, to understand the origin of CEMP-no stars. We confirm that Pop III and Pop II stars are mainly responsible for the formation of CEMP and C-normal stars, respectively. New to this study, we find that a majority of CEMP-no stars in the observed UFDs and the MW halo can be explained by Pop III SNe with normal explosion energy (ESN = 1.2 × 1051 erg) and Pop II enrichment, but faint SNe might also be needed to produce CEMP-no stars with $$\rm [C/Fe]\gtrsim 2$$, corresponding to the absolute carbon abundance of $$\rm A(C)\gtrsim 6.0$$. Furthermore, we find that while we create CEMP-no stars with high carbon ratio $$\rm [C/Fe]\approx 3-4$$, by adopting faint SNe, it is still challenging to reproduce CEMP-no stars with extreme level of carbon abundance of $$\rm A(C)\approx 7.0-7.5$$, observed both in the MW halo and UFDs. 
    more » « less
  3. Abstract The search for Population III stars has fascinated and eluded astrophysicists for decades. One promising place for capturing evidence of their presence must be high-redshift objects; signatures should be recorded in their characteristic chemical abundances. We deduce the Fe and Mg abundances of the broadline region (BLR) from the intensities of ultraviolet Mg ii and Fe ii emission lines in the near-infrared spectrum of UKIDSS Large Area Survey (ULAS) J1342+0928 at z = 7.54, by advancing our novel flux-to-abundance conversion method developed for quasars up to z ∼ 3. We find that the BLR of this quasar is extremely enriched, by a factor of 20 relative to the solar Fe abundance, together with a very low Mg/Fe abundance ratio: [Fe/H] = +1.36 ± 0.19 and [Mg/Fe] =−1.11 ± 0.12, only 700 million years after the Big Bang. We conclude that such an unusual abundance feature cannot be explained by the standard view of chemical evolution that considers only the contributions from canonical supernovae. While there remains uncertainty in the high-mass end of the Population III initial mass function, here we propose that the larger amount of iron in ULAS J1342+0928 was supplied by a pair-instability supernova (PISN) caused by the explosion of a massive Population III star in the high-mass end of the possible range of 150–300 M ⊙ . Chemical evolution models based on initial PISN enrichment well explain the trend in [Mg/Fe]- z all the way from z < 3 to z = 7.54. We predict that stars with very low [Mg/Fe] at all metallicities are hidden in the galaxy, and they will be efficiently discovered by ongoing new-generation photometric surveys. 
    more » « less
  4. Abstract Population III (Pop III) stars, the first generation of stars formed from primordial gas, played a fundamental role in shaping the early Universe through their influence on cosmic reionization, early chemical enrichment, and the formation of the first galaxies. However, to date, they have eluded direct detection due to their short lifetimes and high redshifts. The launch of the James Webb Space Telescope (JWST) has revolutionized observational capabilities, providing the opportunity to detect Pop III stars via caustic lensing, where strong gravitational lensing magnifies individual stars to observable levels. This prospect makes it compelling to develop accurate models for their spectral characteristics to distinguish them from other stellar populations. Previous studies have focused on computing the spectral properties of nonrotating, zero-age main-sequence (ZAMS) Pop III stars. In this work, we expand upon these efforts by incorporating the effects of stellar rotation and post-ZAMS evolution into spectral calculations. We use the JWST bands and magnitude limits to identify the optimal observing conditions, both for isolated stars, as well as for small star clusters. We find that, while rotation does not appreciably change the observability at ZAMS, the subsequent evolution can significantly brighten the stars, making the most massive ones potentially visible with only moderate lensing. 
    more » « less
  5. null (Ed.)
    ABSTRACT Carbon-enhanced metal-poor (CEMP) stars are the living fossils holding records of chemical enrichment from early generations of stars. In this work, we perform a set of numerical simulations of the enrichment from a supernova (SN) of a first generation of metal-free (Pop III) star and the gravitational collapse of the enriched cloud, considering all relevant cooling/heating processes and chemical reactions as well as the growth of dust grains. We adopt faint SN models for the first time with progenitor masses MPopIII = 13–$$80 \ {\rm M_{\bigodot }}$$, which yield C-enhanced abundance patterns ([C/Fe] = 4.57–4.75) through mixing and fallback of innermost layers of the ejecta. This model also considers the formation and destruction of dust grains. We find that the metals ejected by the SN can be partly re-accreted by the same dark matter minihalo, and carbon abundance of the enriched cloud A(C) = 3.80–5.06 is lower than the abundance range of observed CEMP stars (A(C) ≳ 6) because the mass of the metals ejected by faint SNe is smaller than normal core-collapse SNe due to extensive fallback. We also find that cloud fragmentation is induced by gas cooling from carbonaceous grains for $$M_{\rm Pop III}= 13 \ {\rm M_{\bigodot }}$$ even with the lowest iron abundance [Fe/H] ∼ −9. This leads to the formation of low-mass stars, and these ‘giga metal-poor’ stars can survive until the present-day Universe and may be found by future observations. 
    more » « less