skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 12 until 2:00 AM ET on Friday, June 13 due to maintenance. We apologize for the inconvenience.


Title: Bear Encounters with Seismic Stations in Alaska and Northwestern Canada
ABSTRACT A typical seismic experiment involves installing 10–50 seismometers for 2–3 yr to record distant and local earthquakes, along with Earth’s ambient noise wavefield. The choice of the region is governed by scientific questions that may be addressed with newly recorded seismic data. In most experiments, not all stations record data for the full expected duration. Data loss may arise from defective equipment, improperly installed equipment, vandalism or theft, inadequate power sources, environmental disruptions (e.g., snow covering solar panels and causing power outage), and many other reasons. In remote regions of Alaska and northwestern Canada, bears are a particular threat to seismic stations. Here, we document three recent projects (Southern Alaska Lithosphere and Mantle Observation Network, Fault Locations and Alaska Tectonics from Seismicity, and Mackenzie Mountains EarthScope Project) in which bears were regular visitors to remote seismic stations. For these projects, there were documented bear encounters at 56 out of 88 remote stations and 6 out of 85 nonremote stations. Considering bear‐disrupted sites—such as dug‐up cables or outages—there were 29 cases at remote stations and one case at nonremote stations. We also compile bear encounters with permanent stations within the Alaska Seismic Network, as well as stations of the Alaska Transportable Array. For these two networks, the stations are designed with fiberglass huts that house and protect equipment. Data losses at these networks because of bears are minor (<5%), though evidence suggests they are regularly visited by bears, and data disruptions are exclusively at remote stations. The primary goal of this study is to formally document the impacts of bears on seismic stations in Alaska and northwestern Canada. We propose that the threat of damage from bears to a station increases with the remoteness of the site and the density of bears, and it decreases with the strength and security of materials used. We suggest that low‐power electric fences be considered for seismic stations—especially for temporary experiments—to protect the equipment and to protect the bears. With the goal of 100% data returns, future seismic experiments in remote regions of bear country should carefully consider the impacts of bears.  more » « less
Award ID(s):
1352668 1251971
PAR ID:
10202257
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Seismological Research Letters
ISSN:
0895-0695
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study integrates data from all broadband seismic stations in Alaska and northwestern Canada in 1999–2022 to construct a shear‐wave velocity model for south‐central Alaska and northwesternmost Canada, using ambient noise wave propagation simulation and inversion. Our model reveals three key features, including (a) the presence of the subducting Yakutat slab with apparent velocity reductions near the trench and within its flat segment, (b) two slab segments beneath the Wrangell volcanic field, differing in steepness, depth, and seismic velocity, and aligning spatially with the northwestern and southeastern volcano clusters, and (c) the existence of slab windows between the Yakutat and Wrangell slabs and between the northwestern and southeastern portions of the Wrangell slab. Our findings reinforce that the Wrangell volcanoes are predominantly influenced by subduction‐related magmatism. Furthermore, the two slab windows could have induced asthenospheric upwelling, contributing to the volcanism in the Wrangell clustered volcanoes. 
    more » « less
  2. Abstract The northwestern part of North America has recorded multiple tectonic events, such as terrane accretion, strike‐slip motion, and subduction of the Pacific and Yakutat plates, providing an iconic setting to investigate the tectonic evolution of the continental crust. In this study we analyze the receiver functions at seismic stations deployed during 1999–2022 to estimate the crustal thickness, as well as possible slab signature, in Alaska and northwestern Canada. The Moho signal can be clearly detected within the continental region. Specifically, in northwestern Canada, the thickest crust is observed beneath the Cordilleran Deformation Front, which marks the structural boundary between the North American Craton and the North American Margin. We observe a few distinct offsets in the Moho depth located both within the tectonic units and approximately across the major faults between the tectonic units. We provide a first‐order estimate of the depth gradient of the Moho offsets based on the horizontal distance of the two closest seismic stations across the offsets. We propose that the Moho offsets reflect the cumulative impact of the accretionary orogenies and post‐orogenic tectonic events on crustal modification. The continental Moho signal is weak or obscure in Aleutian and southcentral Alaska, and the oceanic Moho within the subducting plates is likely detected. This study provides new seismic insights into understanding the impacts of the tectonic events on continental formation and evolution. 
    more » « less
  3. The polar bear ( Ursus maritimus ) has become a symbol of the threat to biodiversity from climate change. Understanding polar bear evolutionary history may provide insights into apex carnivore responses and prospects during periods of extreme environmental perturbations. In recent years, genomic studies have examined bear speciation and population history, including evidence for ancient admixture between polar bears and brown bears ( Ursus arctos ). Here, we extend our earlier studies of a 130,000- to 115,000-y-old polar bear from the Svalbard Archipelago using a 10× coverage genome sequence and 10 new genomes of polar and brown bears from contemporary zones of overlap in northern Alaska. We demonstrate a dramatic decline in effective population size for this ancient polar bear’s lineage, followed by a modest increase just before its demise. A slightly higher genetic diversity in the ancient polar bear suggests a severe genetic erosion over a prolonged bottleneck in modern polar bears. Statistical fitting of data to alternative admixture graph scenarios favors at least one ancient introgression event from brown bears into the ancestor of polar bears, possibly dating back over 150,000 y. Gene flow was likely bidirectional, but allelic transfer from brown into polar bear is the strongest detected signal, which contrasts with other published work. These findings may have implications for our understanding of climate change impacts: Polar bears, a specialist Arctic lineage, may not only have undergone severe genetic bottlenecks but also been the recipient of generalist, boreal genetic variants from brown bears during critical phases of Northern Hemisphere glacial oscillations. 
    more » « less
  4. Abstract During the Late Pleistocene, major parts of North America were periodically covered by ice sheets. However, there are still questions about whether ice‐free refugia were present in the Alexander Archipelago along the Southeast (SE) Alaska coast during the last glacial maximum (LGM). Numerous subfossils have been recovered from caves in SE Alaska, including American black (Ursus americanus) and brown (U. arctos) bears, which today are found in the Alexander Archipelago but are genetically distinct from mainland bear populations. Hence, these bear species offer an ideal system to investigate long‐term occupation, potential refugial survival and lineage turnover. Here, we present genetic analyses based on 99 new complete mitochondrial genomes from ancient and modern brown and black bears spanning the last ~45,000 years. Black bears form two SE Alaskan subclades, one preglacial and another postglacial, that diverged >100,000 years ago. All postglacial ancient brown bears are closely related to modern brown bears in the archipelago, while a single preglacial brown bear is found in a distantly related clade. A hiatus in the bear subfossil record around the LGM and the deep split of their pre‐ and postglacial subclades fail to support a hypothesis of continuous occupancy in SE Alaska throughout the LGM for either species. Our results are consistent with an absence of refugia along the SE Alaska coast, but indicate that vegetation quickly expanded after deglaciation, allowing bears to recolonize the area after a short‐lived LGM peak. 
    more » « less
  5. null (Ed.)
    Abstract Cook Inlet fore‐arc basin in south‐central Alaska is a large, deep (7.6 km) sedimentary basin with the Anchorage metropolitan region on its margins. From 2015 to 2017, a set of 28 broadband seismic stations was deployed in the region as part of the Southern Alaska Lithosphere and Mantle Observation Network (SALMON) project. The SALMON stations, which also cover the remote western portion of Cook Inlet basin and the back‐arc region, form the basis for our observational study of the seismic response of Cook Inlet basin. We quantify the influence of Cook Inlet basin on the seismic wavefield using three data sets: (1) ambient‐noise amplitudes of 18 basin stations relative to a nonbasin reference station, (2) earthquake ground‐motion metrics for 34 crustal and intraslab earthquakes, and (3) spectral ratios (SRs) between basin stations and nonbasin stations for the same earthquakes. For all analyses, we examine how quantities vary with the frequency content of the seismic signal and with the basin depth at each station. Seismic waves from earthquakes and from ambient noise are amplified within Cook Inlet basin. At low frequencies (0.1–0.5 Hz), ambient‐noise ratios and earthquake SRs are in a general agreement with power amplification of 6–14 dB, corresponding to amplitude amplification factors of 2.0–5.0. At high frequencies (0.5–4.0 Hz), the basin amplifies the earthquake wavefield by similar factors. Our results indicate stronger amplification for the deeper basin stations such as near Nikiski on the Kenai Peninsula and weaker amplification near the margins of the basin. Future work devoted to 3D wavefield simulations and treatment of source and propagation effects should improve the characterization of the frequency‐dependent response of Cook Inlet basin to recorded and scenario earthquakes in the region. 
    more » « less