skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ground‐Motion Amplification in Cook Inlet Region, Alaska, from Intermediate‐Depth Earthquakes, Including the 2018 Mw 7.1 Anchorage Earthquake
Abstract We measure pseudospectral and peak ground motions from 44 intermediate‐depth Mw≥4.9 earthquakes in the Cook Inlet region of southern Alaska, including those from the 2018 Mw 7.1 earthquake near Anchorage, to identify regional amplification features (0.1–5  s period). Ground‐motion residuals are computed with respect to an empirical ground‐motion model for intraslab subduction earthquakes, and we compute bias, between‐, and within‐event terms through a linear mixed‐effects regression. Between‐event residuals are analyzed to assess the relative source characteristics of the Cook Inlet earthquakes and suggest a difference in the scaling of the source with depth, relative to global observations. The within‐event residuals are analyzed to investigate regional amplification, and various spatial patterns manifest, including correlations of amplification with depth of the Cook Inlet basin and varying amplifications east and west of the center of the basin. Three earthquake clusters are analyzed separately and indicate spatial amplification patterns that depend on source location and exhibit variations in the depth scaling of long‐period basin amplification. The observations inform future seismic hazard modeling efforts in the Cook Inlet region. More broadly, they suggest a greater complexity of basin and regional amplification than is currently used in seismic hazard analyses.  more » « less
Award ID(s):
1251971
PAR ID:
10202261
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Seismological Research Letters
Volume:
91
Issue:
1
ISSN:
0895-0695
Page Range / eLocation ID:
142 to 152
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Cook Inlet fore‐arc basin in south‐central Alaska is a large, deep (7.6 km) sedimentary basin with the Anchorage metropolitan region on its margins. From 2015 to 2017, a set of 28 broadband seismic stations was deployed in the region as part of the Southern Alaska Lithosphere and Mantle Observation Network (SALMON) project. The SALMON stations, which also cover the remote western portion of Cook Inlet basin and the back‐arc region, form the basis for our observational study of the seismic response of Cook Inlet basin. We quantify the influence of Cook Inlet basin on the seismic wavefield using three data sets: (1) ambient‐noise amplitudes of 18 basin stations relative to a nonbasin reference station, (2) earthquake ground‐motion metrics for 34 crustal and intraslab earthquakes, and (3) spectral ratios (SRs) between basin stations and nonbasin stations for the same earthquakes. For all analyses, we examine how quantities vary with the frequency content of the seismic signal and with the basin depth at each station. Seismic waves from earthquakes and from ambient noise are amplified within Cook Inlet basin. At low frequencies (0.1–0.5 Hz), ambient‐noise ratios and earthquake SRs are in a general agreement with power amplification of 6–14 dB, corresponding to amplitude amplification factors of 2.0–5.0. At high frequencies (0.5–4.0 Hz), the basin amplifies the earthquake wavefield by similar factors. Our results indicate stronger amplification for the deeper basin stations such as near Nikiski on the Kenai Peninsula and weaker amplification near the margins of the basin. Future work devoted to 3D wavefield simulations and treatment of source and propagation effects should improve the characterization of the frequency‐dependent response of Cook Inlet basin to recorded and scenario earthquakes in the region. 
    more » « less
  2. Abstract The 24 January 2016 Iniskin, Alaska earthquake, at Mw 7.1 and 111 km depth, is the largest intermediate‐depth earthquake felt in Alaska, with recorded accelerations reaching 0.2g near Anchorage. Ground motion from the Iniskin earthquake is underpredicted by at least an order of magnitude near Anchorage and the Kenai Peninsula, and is similarly overpredicted in the back‐arc north and west of Cook Inlet. This is in strong contrast to the 30 November 2018 earthquake near Anchorage that was also Mw 7.1 but only 48 km deep. The Anchorage earthquake signals show strong distance decay and are generally well predicted by ground‐motion prediction equations. Smaller intermediate‐depth earthquakes (depth>70  km and 3<M<6.4) with hypocenters near the Iniskin mainshock show similar patterns in ground shaking as the Iniskin earthquake, indicating that the shaking pattern is due to path effects and not the source. The patterns indicate a first‐order role for mantle attenuation in the spatial variability of strong motion. In addition, along‐slab paths appear to be amplified by waveguide effects due to the subduction of crust at >1  Hz; the Anchorage and Kenai regions are particularly susceptible to this amplification due to their fore‐arc position. Both of these effects are absent in the 2018 Anchorage shaking pattern, because that earthquake is shallower and waves largely propagate in the upper‐plate crust. Basin effects are also present locally, but these effects do not explain the first‐order amplitude variations. These analyses show that intermediate‐depth earthquakes can pose a significant shaking hazard, and the pattern of shaking is strongly controlled by mantle structure. 
    more » « less
  3. Local soil conditions depict an important role in regional seismic hazard assessments due to their influence on earthquake-induced ground shaking and deformation. The different levels of damage and site response at nearby locations correlate to site and geologic conditions variability, as has been reported after past earthquakes. Evaluating spatially variable ground motions (GMs) is key for earthquake reconnaissance efforts and regional seismic hazard assessments. This study focuses on the evaluation of spatial correlations in site parameters (e.g. time-averaged shear-wave velocity to a depth of 30 meters) at Kiban-Kyoshin Network (KiK-net), and their comparison to the observed spatial correlation residuals from ground motion intensity measures (IMs) from the Mw9.1 Tohoku earthquake. Current spatial correlation models treat site effects either as a fixed amplification factor or as randomized amplifications, but site effects are neither fixed nor random. Hence, geostatistical methods are used here to estimate spatial correlations between parameters that control site response and integrate their effects on resulting spatially variable ground motions. In this work, we evaluate the significance of the spatial correlation for different site parameters with respect to the GM amplification IMs residuals. 
    more » « less
  4. Long‐period ground motions from large (Mw≥7.0) subduction‐zone earthquakes are a real threat for large‐scale human‐made structures. The Nankai subduction zone, Japan, is expected to host a major megathrust earthquake in the near future and has therefore been instrumented with offshore and onshore permanent seismic networks. We use the ambient seismic field continuously recorded at these stations to simulate the long‐period (4–10 s) ground motions from past and future potential offshore earthquakes. First, we compute impulse response functions (IRFs) between an ocean‐bottom seismometer of the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) network, which is located offshore on the accretionary wedge, and 60 onshore Hi‐net stations using seismic interferometry by deconvolution. As this technique only preserves the relative amplitude information of the IRFs, we use a moderate Mw 5.5 event to calibrate the amplitudes to absolute levels. After calibration, the IRFs are used together with a uniform stress‐drop source model to simulate the long‐period ground motions of the 2004 Mw 7.2 intraplate earthquake. For both events, the residuals of the 5\\% damped spectral acceleration (SA) computed from the horizontal and vertical components of the observed and simulated waveforms exhibit almost no bias and acceptable uncertainties. We also compare the observed SA values of the Mw 7.2 event to those from the subduction‐zone BC Hydro ground‐motion model (GMM) and find that our simulations perform better than the model. Finally, we simulate the long‐period ground motions of a hypothetical Mw 8.0 subduction earthquake that could occur along the Nankai trough. For this event, our simulations generally exhibit stronger long‐period ground motions than those predicted by the BC Hydro GMM. This study suggests that the ambient seismic field recorded by the ever‐increasing number of ocean‐bottom seismometers can be used to simulate the long‐period ground motions from large megathrust earthquakes. 
    more » « less
  5. Abstract The nonlinear mechanical responses of rocks and soils to seismic waves play an important role in earthquake physics, influencing ground motion from source to site. Continuous geophysical monitoring, such as ambient noise interferometry, has revealed co‐seismic wave speed reductions extending tens of kilometers from earthquake sources. However, the mechanisms governing these changes remain challenging to model, especially at regional scales. Using a nonlinear damage model constrained by laboratory experiments, we develop and apply an open‐source 3D discontinuous Galerkin method to simulate regional co‐seismic wave speed changes during the 2015 Mw7.8 Gorkha earthquake. We find pronounced spatial variations of co‐seismic wave speed reduction, ranging from <0.01% to >50%, particularly close to the source and within the Kathmandu Basin, while disagreement with observations remains. The most significant reduction occurs within the sedimentary basin and varies with basin depths, whereas wave speed reductions correlate with the fault slip distribution near the source. By comparing ground motions from simulations with elastic, viscoelastic, elastoplastic, and nonlinear damage rheologies, we demonstrate that the nonlinear damage model effectively captures low‐frequency ground motion amplification due to strain‐dependent wave speed reductions in soft sediments. We verify the accuracy of our approach through comparisons with analytical solutions and assess its scalability on high‐performance computing systems. The model shows near‐linear strong and weak scaling up to 2,048 nodes, enabling efficient large‐scale simulations. Our findings provide a physics‐based framework to quantify nonlinear earthquake effects and emphasize the importance of damage‐induced wave speed variations for seismic hazard assessment and ground motion predictions. 
    more » « less