Abstract Advances in physics‐based earthquake simulations, utilizing high‐performance computing, have been exploited to better understand the generation and characteristics of the high‐frequency seismic wavefield. However, direct comparison to ground motion observations of a specific earthquake is challenging. We here propose a new approach to simulate data‐fused broadband ground motion synthetics using 3D dynamic rupture modeling of the 2016Mw6.2 Amatrice, Italy earthquake. We augment a smooth, best‐fitting model from Bayesian dynamic rupture source inversion of strong‐motion data (<1 Hz) with fractal fault roughness, frictional heterogeneities, viscoelastic attenuation, and topography. The required consistency to match long periods allows us to quantify the role of small‐scale dynamic source heterogeneities, such as the 3D roughness drag, from observational broadband seismic waveforms. We demonstrate that 3D data‐constrained fully dynamic rupture synthetics show good agreement with various observed ground‐motion metrics up to ∼5 Hz and are an important avenue toward non‐ergodic, physics‐based seismic hazard assessment.
more »
« less
A Discontinuous Galerkin Method for Simulating 3D Seismic Wave Propagation in Nonlinear Rock Models: Verification and Application to the M w 7.8 2015 Gorkha, Nepal Earthquake
Abstract The nonlinear mechanical responses of rocks and soils to seismic waves play an important role in earthquake physics, influencing ground motion from source to site. Continuous geophysical monitoring, such as ambient noise interferometry, has revealed co‐seismic wave speed reductions extending tens of kilometers from earthquake sources. However, the mechanisms governing these changes remain challenging to model, especially at regional scales. Using a nonlinear damage model constrained by laboratory experiments, we develop and apply an open‐source 3D discontinuous Galerkin method to simulate regional co‐seismic wave speed changes during the 2015 Mw7.8 Gorkha earthquake. We find pronounced spatial variations of co‐seismic wave speed reduction, ranging from <0.01% to >50%, particularly close to the source and within the Kathmandu Basin, while disagreement with observations remains. The most significant reduction occurs within the sedimentary basin and varies with basin depths, whereas wave speed reductions correlate with the fault slip distribution near the source. By comparing ground motions from simulations with elastic, viscoelastic, elastoplastic, and nonlinear damage rheologies, we demonstrate that the nonlinear damage model effectively captures low‐frequency ground motion amplification due to strain‐dependent wave speed reductions in soft sediments. We verify the accuracy of our approach through comparisons with analytical solutions and assess its scalability on high‐performance computing systems. The model shows near‐linear strong and weak scaling up to 2,048 nodes, enabling efficient large‐scale simulations. Our findings provide a physics‐based framework to quantify nonlinear earthquake effects and emphasize the importance of damage‐induced wave speed variations for seismic hazard assessment and ground motion predictions.
more »
« less
- PAR ID:
- 10612800
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 130
- Issue:
- 7
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Using a novel high‐performance computing implementation of a nonlinear continuum damage‐breakage model, we explore interactions between 3D co‐seismic off‐fault damage, seismic radiation, and rupture dynamics. Our simulations demonstrate that off‐fault damage enhances high‐frequency wave radiation above 1 Hz, reduces rupture speed and alters the total kinetic energy. We identify distinct damage regimes separated by solid‐granular transition, with smooth distributions under low damage conditions transitioning to localized, mesh‐independent shear bands upon reaching brittle failure. The shear band orientations depend systematically on the background stress and agree with analytical predictions. The brittle damage inhibits transitions to supershear rupture propagation and the rupture front strain field results in locally reduced damage accumulation during supershear transition. The dynamically generated damage yields uniform and isotropic ratios of fault‐normal to fault‐parallel high‐frequency ground motions. Co‐seismic damage zones exhibit depth‐dependent width variations, becoming broader near the Earth's surface consistent with field observations, even under uniform stress conditions. We discover a new delayed dynamic triggering mechanism in multi‐fault systems, driven by reductions in elastic moduli and the ensuing stress heterogeneities in 3D tensile fault step‐overs. This mechanism affects the static and dynamic stress fields and includes the formation of high shear‐traction fronts around localized damage zones. The brittle damage facilitates rupture cascading across faults, linking delay times directly to damage rheology and fault zone evolution. Our results help explain near‐fault high‐frequency isotropic radiation and delayed rupture triggering, improving our understanding of earthquake processes, seismic wavefields and fault system interactions.more » « less
-
null (Ed.)Abstract We measure pseudospectral and peak ground motions from 44 intermediate‐depth Mw≥4.9 earthquakes in the Cook Inlet region of southern Alaska, including those from the 2018 Mw 7.1 earthquake near Anchorage, to identify regional amplification features (0.1–5 s period). Ground‐motion residuals are computed with respect to an empirical ground‐motion model for intraslab subduction earthquakes, and we compute bias, between‐, and within‐event terms through a linear mixed‐effects regression. Between‐event residuals are analyzed to assess the relative source characteristics of the Cook Inlet earthquakes and suggest a difference in the scaling of the source with depth, relative to global observations. The within‐event residuals are analyzed to investigate regional amplification, and various spatial patterns manifest, including correlations of amplification with depth of the Cook Inlet basin and varying amplifications east and west of the center of the basin. Three earthquake clusters are analyzed separately and indicate spatial amplification patterns that depend on source location and exhibit variations in the depth scaling of long‐period basin amplification. The observations inform future seismic hazard modeling efforts in the Cook Inlet region. More broadly, they suggest a greater complexity of basin and regional amplification than is currently used in seismic hazard analyses.more » « less
-
ABSTRACT We simulate shaking in Tacoma, Washington, and surrounding areas from Mw 6.5 and 7.0 earthquakes on the Tacoma fault. Ground motions are directly modeled up to 2.5 Hz using kinematic, finite-fault sources; a 3D seismic velocity model considering regional geology; and a model mesh with 30 m sampling at the ground surface. In addition, we explore how adjustments to the seismic velocity model affect predicted shaking over a range of periods. These adjustments include the addition of a region-specific geotechnical gradient, surface topography, and a fault damage zone. We find that the simulated shaking tends to be near estimates from empirical ground-motion models (GMMs). However, long-period (T = 5.0 s) shaking within the Tacoma basin is typically underpredicted by the GMMs. The fit between simulated and GMM-derived short-period (T = 0.5 s) shaking is significantly improved with the addition of the geotechnical gradient. From comparing different Mw 6.5 earthquake scenarios, we also find that the response of the Tacoma basin is sensitive to the azimuth of incoming seismic waves. In adding surface topography to the simulation, we find that average ground motion is similar to that produced from the nontopography model. However, shaking is often amplified at topographic highs and deamplified at topographic lows, and the wavefield undergoes extensive scattering. Adding a fault damage zone has the effect of amplifying short-period shaking adjacent to the fault, while reducing far-field shaking. Intermediate-period shaking is amplified within the Tacoma basin, likely due to enhanced surface-wave generation attributable to the fault damage zone waveguide. When applied in the same model, the topography and fault damage zone adjustments often enhance or reduce the effects of one another, adding further complexity to the wavefield. These results emphasize the importance of improving near-surface velocity model resolution as waveform simulations progress toward higher frequencies.more » « less
-
Abstract The Húsavík‐Flatey Fault Zone (HFFZ) is the largest strike‐slip fault in Iceland and poses a high seismic risk to coastal communities. To investigate physics‐based constraints on earthquake hazards, we construct three fault system models of varying geometric complexity and model 79 3‐D multi‐fault dynamic rupture scenarios in the HFFZ. By assuming a simple regional prestress and varying hypocenter locations, we analyze the rupture dynamics, fault interactions, and the associated ground motions up to 2.5 Hz. All models account for regional seismotectonics, topo‐bathymetry, 3‐D subsurface velocity, viscoelastic attenuation, and off‐fault plasticity, and we explore the effect of fault roughness. The rupture scenarios obey earthquake scaling relations and predict magnitudes comparable to those of historical events. We show how fault system geometry and segmentation, hypocenter location, and prestress can affect the potential for rupture cascading, leading to varying slip distributions across different portions of the fault system. Our earthquake scenarios yield spatially heterogeneous near‐field ground motions modulated by geometric complexities, topography, and rupture directivity, particularly in the near‐field. The average ground motion attenuation characteristics of dynamic rupture scenarios of comparable magnitudes and mean stress drop are independent of variations in source complexity, magnitude‐consistent and in good agreement with the latest regional empirical ground motion models. However, physics‐based ground motion variability changes considerably with fault‐distance and increases for unilateral compared to bilateral ruptures. Systematic variations in physics‐based near‐fault ground motions provide important insights into the mechanics and potential earthquake hazard of large strike‐slip fault systems, such as the HFFZ.more » « less
An official website of the United States government
