skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: COOPERATIVE FREE VOLUME RATE MODEL APPLIED TO THE PRESSURE-DEPENDENT SEGMENTAL DYNAMICS OF NATURAL RUBBER AND POLYUREA
ABSTRACT We apply the cooperative free volume (CFV) rate model for pressure-dependent dynamics of glass-forming liquids and polymer melts, focusing on two new applications of the model, to natural rubber and to polyurea. In CFV, segmental relaxation times, τ, are analyzed as a function of temperature (T) and free volume (Vfree), where the latter provides an insightful route to expressing dynamics relative to using the system's overall total volume (V). Vfree is defined as the difference between the total volume and the volume at close packing and is predicted independently of the dynamics for any temperature and pressure using the locally correlated lattice equation-of-state analysis of characteristic thermodynamic data. The new results for natural rubber and polyurea are discussed in the context of results on a set of polymeric and small-molecule glass formers that had previously been modeled with CFV. We also discuss the results in the context of recent connections that we have made with the density-scaling approach.  more » « less
Award ID(s):
1708542
PAR ID:
10202327
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Rubber Chemistry and Technology
Volume:
92
Issue:
4
ISSN:
0035-9475
Page Range / eLocation ID:
612 to 624
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Shock waves from underwater and air explosions are significant threats to surface and underwater vehicles and structures. Recent studies on the mechanical and thermal properties of various phase-separated elastomers indicate the possibility of applying these materials as a coating to mitigate shock-induced structural failures. To demonstrate this approach and investigate its efficacy, this paper presents a fluid-structure coupled computational model capable of predicting the dynamic response of air-backed bilayer (i.e. elastomer coating – metal substrate) structures submerged in water to hydrostatic and underwater explosion loads. The model couples a three-dimensional multiphase finite volume computational fluid dynamics model with a nonlinear finite element computational solid dynamics model using the FIVER (FInite Volume method with Exact multi-material Riemann solvers) method. The kinematic boundary condition at the fluid-structure interface is enforced using an embedded boundary method that is capable of handling large structural deformation and topological changes. The dynamic interface condition is enforced by formulating and solving local, one-dimensional fluid-solid Riemann problems, which is well-suited for transferring shock and impulsive loads. The capability of this computational model is demonstrated through a numerical investigation of hydrostatic and shock-induced collapse of aluminum tubes with polyurea coating on its inner surface. The thickness of the structure is resolved explicitly by the finite element mesh. The nonlinear material behavior of polyurea is accounted for using a hyper-viscoelastic constitutive model featuring a modified Mooney-Rivlin equation and a stress relaxation function in the form of prony series. Three numerical experiments are conducted to simulate and compare the collapse of the structure in different loading conditions, including a constant pressure, a fluid environment initially in hydrostatic equilibrium, and a two-phase fluid flow created by a near-field underwater explosion. 
    more » « less
  2. null (Ed.)
    Data continue to accrue indicating that experimental techniques may differ in their sensitivity to mobility and glassiness. In this work the Limited Mobility (LM) kinetic model is used to show that two metrics for tracking sample mobility yield quantitatively different results for the glass transition and mobile layer thickness in systems where free surfaces are present. Both LM metrics track the fraction of material that embodies mobile free volume; in one it is relative to that portion of the sample containing any kind (mobile and dormant) of free volume, and in the other it is relative to the overall sample. Without any kind of optimization, use of the latter metric leads to semi-quantitative agreement with experimental film results, both for the mobile layer thickness and the dependence of sample glass transition temperature on film thickness. Connecting the LM predictions with experiment also produces a semi-quantitative mapping between LM model length and temperature scales, and those of real systems. 
    more » « less
  3. The relationship between the dynamics and structure of amorphous thin films and nanocomposites near their glass transition is an important problem in soft-matter physics. Here, we develop a simple theoretical approach to describe the density profile and the a-relaxation time of a glycerol-silica nanocomposite (S. Cheng et al., J. Chem. Phys., 2015, 143, 194704). We begin by applying the Derjaguin approximation, where we replace the curved surface of the particle with the planar one; thus, modeling the nanocomposite is reduced to that of a confined thin film. Subsequently, by employing the molecular dynamics (MD) simulation data of Cheng et al., we approximate the density profile of a supported liquid thin film as a stationary solution of a fourth-order partial differential equation (PDE). We then construct an appropriate density functional, from which the density profile emerges through the minimization of free energy. Our final assumption is that of a consistent, temperature-independent scaled density profile, ensuring that the free volume throughout the entire nanocomposite increases with temperature in a smooth, monotonic fashion. Considering the established relationship between glycerol relaxation time and temperature, we can employ Doolittle-type analysis (‘‘naı ¨ ve’’ free-volume model), to calculate the relaxation time based on temperature and film thickness. We then convert the film thickness into the interparticle distance and subsequently the filler volume fraction for the nanocomposites and compare our model predictions with experimental data, resulting in a good agreement. The proposed approach can be easily extended to other nanocomposite and film systems. 
    more » « less
  4. null (Ed.)
    The fluid dynamics of a bubble collapsing near an elastic or viscoelastic material is coupled with the mechanical response of the material. We apply a multiphase fluid–solid coupled computational model to simulate the collapse of an air bubble in water induced by an ultrasound shock wave, near different types of materials including metals (e.g. aluminium), polymers (e.g. polyurea), minerals (e.g. gypsum), glass and foams. We characterize the two-way fluid–material interaction by examining the fluid pressure and velocity fields, the time history of bubble shape and volume and the maximum tensile and shear stresses produced in the material. We show that the ratio of the longitudinal acoustic impedance of the material compared to that of the ambient fluid, $$Z/Z_0$$ , plays a significant role. When $$Z/Z_0<1$$ , the material reflects the compressive front of the incident shock into a tensile wave. The reflected tensile wave impinges on the bubble and decelerates its collapse. As a result, the collapse produces a liquid jet, but not necessarily a shock wave. When $$Z/Z_0>1$$ , the reflected wave is compressive and accelerates the bubble's collapse, leading to the emission of a shock wave whose amplitude increases linearly with $$\log (Z/Z_0)$$ , and can be much higher than the amplitude of the incident shock. The reflection of this emitted shock wave impinges on the bubble during its rebound. It reduces the speed of the bubble's rebound and the velocity of the liquid jet. Furthermore, we show that, for a set of materials with $$Z/Z_0\in [0.04, 10.8]$$ , the effect of acoustic impedance on the bubble's collapse time and minimum volume can be captured using phenomenological models constructed based on the solution of Rayleigh–Plesset equation. 
    more » « less
  5. Understanding fluid viscosity is crucial for applications including lubrication and chemical kinetics. A commonality of molecular models is that they describe fluid flow based on the availability of vacant space. The proposed analysis builds on Goldstein’s idea that viscous transport must involve the concerted motion of a molecular ensemble, referred to as cooperatively rearranging regions (CRRs) by Adam and Gibbs in their entropy-based viscosity model for liquids close to their glass transition. The viscosity data for propylene carbonate reveal a non-monotonic trend of the activation volume with pressure, suggesting the existence of two types of CRR with different compressibility behaviors. This is proposed to result from a change in CRR free volume (<0.2 GPa) and a growth in its size (>0.2 GPa). We use Evans–Polanyi perturbation theory to develop an analytical model for the structural changes of the CRR in function of pressure and temperature and their effect on Eyring viscosity. This analysis shows that the activation energies and volumes scale with the CRR size. Using the compressibility data of propylene carbonate, we show that the activation volume of the CRR at low pressures depends on the compressibility of an ensemble comprised of the first coordination shell around a molecule. At higher pressures, we apply an Adam–Gibbs-type analysis to model the increase in CRR size and its effect on viscosity, where the increase in size is estimated from propylene carbonate’s heat capacity. However, this analysis also reveals deviations from the Adam and Gibbs model that will guide future improvements. 
    more » « less