skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: The Quadratic-Quadratic Regulator Problem: Approximating feedback controls for quadratic-in-state nonlinear systems
Award ID(s):
1819110
PAR ID:
10202541
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the American Control Conference
Page Range / eLocation ID:
818 to 823
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper introduces the study of LG-quadratic quotients of exterior algebras, showing that they are Koszul, as in the commutative case. We construct an example of an LG-quadratic algebra that is not G-quadratic and another example that is Koszul but not LG-quadratic. This is only the second known Koszul algebra that is not LG-quadratic and the first that is noncommutative. 
    more » « less
  2. null (Ed.)
  3. A nonlinear small-strain elastic theory is constructed from a systematic expansion in Biot strains, truncated at quadratic order. The primary motivation is the desire for a clean separation between stretching and bending energies for shells, which appears to arise only from reduction of a bulk energy of this type. An approximation of isotropic invariants, bypassing the solution of a quartic equation or computation of tensor square roots, allows stretches, rotations, stresses, and balance laws to be written in terms of derivatives of position. Two-field formulations are also presented. Extensions to anisotropic theories are briefly discussed. 
    more » « less
  4. We provide a brief overview of what is known about quadratic grav- ity, which includes terms quadratic in the curvatures in the fundamental action. This is proposed as a renormalizeable UV completion for quantum gravity which contin- ues to use the metric as the fundamental dynamical variable. However, there are unusual field-theoretic consequences because the propagators contain quartic mo- mentum dependence. At the present stage of our understanding, quadratic gravity continues to be a viable candidate for a theory of quantum gravity. 
    more » « less