We integrated data from a newborn hearing screening database and a preschool disability database to examine the relationship between newborn click evoked auditory brainstem responses (ABRs) and developmental disabilities. This sample included children with developmental delay (n = 2992), speech impairment (SI, n = 905), language impairment (n = 566), autism spectrum disorder (ASD, n = 370), and comparison children (n = 128,181). We compared the phase of the ABR waveform, a measure of sound processing latency, across groups. Children with SI and children with ASD had greater newborn ABR phase values than both the comparison group and the developmental delay group. Newborns later diagnosed with SI or ASD have slower neurological responses to auditory stimuli, suggesting sensory differences at birth.
more »
« less
Prolonged Auditory Brainstem Response in Universal Hearing Screening of Newborns with Autism Spectrum Disorder
Previous studies report prolonged auditory brainstem response (ABR) in children and adults with autism spectrum disorder (ASD). Despite its promise as a biomarker, it is unclear whether healthy newborns who later develop ASD also show ABR abnormalities. In the current study, we extracted ABR data on 139,154 newborns from their Universal Newborn Hearing Screening, including 321 newborns who were later diagnosed with ASD. We found that the ASD newborns had significant prolongations of their ABR phase and V‐negative latency compared with the non‐ASD newborns. Newborns in the ASD group also exhibited greater variance in their latencies compared to previous studies in older ASD samples, likely due in part to the low intensity of the ABR stimulus. These findings suggest that newborns display neurophysiological variation associated with ASD at birth. Future studies with higher‐intensity stimulus ABRs may allow more accurate predictions of ASD risk, which could augment the universal ABR test that currently screens millions of newborns worldwide.
more »
« less
- Award ID(s):
- 1653737
- PAR ID:
- 10202572
- Date Published:
- Journal Name:
- Autism Research
- ISSN:
- 1939-3792
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Beyond the symptoms which characterize their diagnoses, individuals with autism spectrum disorder (ASD) show enhanced performance in simple perceptual discrimination tasks. Often attributed to superior sensory sensitivities, enhanced performance may also reflect a weaker bias towards previously perceived stimuli. This study probes perceptual inference in a group of individuals who have lost the autism diagnosis (LAD); that is, they were diagnosed with ASD in early childhood but have no current ASD symptoms. Groups of LAD, current ASD, and typically developing (TD) participants completed an auditory discrimination task. Individuals with TD showed a bias towards previously perceived stimuli—a perceptual process called “contraction bias”; that is, their representation of a given tone was contracted towards the preceding trial stimulus in a manner that is Bayesian optimal. Similarly, individuals in the LAD group showed a contraction bias. In contrast, individuals with current ASD showed a weaker contraction bias, suggesting reduced perceptual inferencing. These findings suggest that changes that characterize LAD extend beyond the social and communicative symptoms of ASD, impacting perceptual domains. Measuring perceptual processing earlier in development in ASD will tap the causality between changes in perceptual and symptomatological domains. Further, the characterization of perceptual inference could reveal meaningful individual differences in complex high-level behaviors.more » « less
-
ABSTRACT Given the foundational nature of infant visual attention and potential cascading effects on later development, studies of individual variability in developmental trajectories in a normative sample are needed. We longitudinally tested newborns (N= 77) at 1–2 and 3–4 weeks, then again at 2, 4, 6, 8 and 14 months of age, assessing individual differences in their attention. Newborns viewed live stimuli (facial gesturing, rotating disk), one at a time, for 3 min each. Older infants viewed a 10‐s side‐by‐side social–nonsocial video (people talking, rotating disk). We found short‐term developmental stability of interindividual differences in infants’ overall, social, and nonsocial attention, within the newborn period (1–4 weeks), and within the later infancy period (2–14 months). Additionally, we found that overall attention, but not social and nonsocial attention, was developmentally stable long term (newborn through 14 months). This novel finding that newborn overall attention predicts later overall attention through the first year suggests a robust individual difference. This study is a first step toward developing individual difference measures of social and nonsocial attention. Future studies need to understand why newborns vary in their attention and to identify the potential impact of this variability on later social and cognitive development.more » « less
-
Abstract Several methods have recently been developed to derive the auditory brainstem response (ABR) from continuous natural speech, facilitating investigation into subcortical encoding of speech. These tools rely on deconvolution to compute the temporal response function (TRF), which models the subcortical auditory pathway as a linear system, where a nonlinearly processed stimulus is taken as the input (i.e., regressor), the electroencephalogram (EEG) data as the output, and the ABR as the impulse response deconvolved from the recorded EEG and the regressor. In this study, we analyzed EEG recordings from subjects listening to both unaltered natural speech and synthesized “peaky speech.” We compared the derived ABR TRFs using three regressors: the half-wave rectified stimulus (HWR) from Maddox and Lee (2018), the glottal pulse train (GP) from Polonenko and Maddox (2021), and the auditory nerve modeled response (ANM; Zilany et al. (2014); (2009)) used in Shan et al. (2024). Our evaluation focused on the signal-to-noise ratio, prediction accuracy, efficiency, and practicality of applying each regressor in both unaltered and peaky speech. The results indicate that the ANM regressor with peaky speech provides the best performance, with the ANM for unaltered speech and the GP regressor for peaky speech close behind, whereas the HWR regressor demonstrated relatively poorer performance. There are, thus, multiple stimulus and analysis tools that can provide high-quality subcortical TRFs, with the choices for which to use dictated by experimental needs. The findings in this study will guide future research and clinical use in selecting the most appropriate paradigm for ABR derivation from continuous, naturalistic speech.more » « less
-
Abstract Neurodevelopmental disorders are on the rise worldwide, with diagnoses that detect derailment from typical milestones by 3 to 4.5 years of age. By then, the circuitry in the brain has already reached some level of maturation that inevitably takes neurodevelopment through a different course. There is a critical need then to develop analytical methods that detect problems much earlier and identify targets for treatment. We integrate data from multiple sources, including neonatal auditory brainstem responses (ABR), clinical criteria detecting autism years later in those neonates, and similar ABR information for young infants and children who also received a diagnosis of autism spectrum disorders, to produce the earliest known digital screening biomarker to flag neurodevelopmental derailment in neonates. This work also defines concrete targets for treatment and offers a new statistical approach to aid in guiding a personalized course of maturation in line with the highly nonlinear, accelerated neurodevelopmental rates of change in early infancy.more » « less
An official website of the United States government

