skip to main content


Title: Perceptual inference is impaired in individuals with ASD and intact in individuals who have lost the autism diagnosis
Abstract Beyond the symptoms which characterize their diagnoses, individuals with autism spectrum disorder (ASD) show enhanced performance in simple perceptual discrimination tasks. Often attributed to superior sensory sensitivities, enhanced performance may also reflect a weaker bias towards previously perceived stimuli. This study probes perceptual inference in a group of individuals who have lost the autism diagnosis (LAD); that is, they were diagnosed with ASD in early childhood but have no current ASD symptoms. Groups of LAD, current ASD, and typically developing (TD) participants completed an auditory discrimination task. Individuals with TD showed a bias towards previously perceived stimuli—a perceptual process called “contraction bias”; that is, their representation of a given tone was contracted towards the preceding trial stimulus in a manner that is Bayesian optimal. Similarly, individuals in the LAD group showed a contraction bias. In contrast, individuals with current ASD showed a weaker contraction bias, suggesting reduced perceptual inferencing. These findings suggest that changes that characterize LAD extend beyond the social and communicative symptoms of ASD, impacting perceptual domains. Measuring perceptual processing earlier in development in ASD will tap the causality between changes in perceptual and symptomatological domains. Further, the characterization of perceptual inference could reveal meaningful individual differences in complex high-level behaviors.  more » « less
Award ID(s):
1735225
NSF-PAR ID:
10280954
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Binding across sensory modalities yields substantial perceptual benefits, including enhanced speech intelligibility. The coincidence of sensory inputs across time is a fundamental cue for this integration process. Recent work has suggested that individuals with diagnoses of schizophrenia (SZ) and autism spectrum disorder (ASD) will characterize auditory and visual events as synchronous over larger temporal disparities than their neurotypical counterparts. Namely, these clinical populations possess an enlarged temporal binding window (TBW). Although patients withSZandASDshare aspects of their symptomatology, phenotypic similarities may result from distinct etiologies. To examine similarities and variances in audiovisual temporal function in these two populations, individuals diagnosed withASD(n = 46; controlsn = 40) andSZ(n = 16, controls = 16) completed an audiovisual simultaneity judgment task. In addition to standard psychometric analyses, synchrony judgments were assessed using Bayesian causal inference modeling. This approach permits distinguishing between distinct causes of an enlargedTBW: ana prioribias to bind sensory information and poor fidelity in the sensory representation. Findings indicate that bothASDandSZpopulations show deficits in multisensory temporal acuity. Importantly, results suggest that while the widerTBWs inASDmost prominently results from atypical priors, the widerTBWs inSZresults from a trend toward changes in prior and weaknesses in the sensory representations. Results are discussed in light of currentASDandSZtheories and highlight that different perceptual training paradigms focused on improving multisensory integration may be most effective in these two clinical populations and emphasize that similar phenotypes may emanate from distinct mechanistic causes.

     
    more » « less
  2. Abstract Lay Summary

    Individuals with autism spectrum disorder (ASD) often exhibit atypical imitation of actions and gestures. Characteristics of vocal imitation in ASD remain unclear. By comparing speech and song imitation, this study shows that individuals with ASD have a vocal imitative deficit that is specific to absolute pitch and duration matching, while performing as well as controls on relative pitch and duration matching, across speech and music domains.

     
    more » « less
  3. Abstract Lay summary

    Individuals with ASD and schizophrenia are more likely to perceive asynchronous auditory and visual events as occurring simultaneously even if they are well separated in time. We investigated whether similar difficulties in audiovisual temporal processing were present in subclinical populations with high autistic and schizotypal traits. We found that the ability to detect audiovisual asynchrony was not affected by different levels of autistic and schizotypal traits. We also found that connectivity of some brain regions engaging in multisensory and timing tasks might explain an individual's tendency to bind multisensory information within a wide or narrow time window.Autism Res2021, 14: 668–680. © 2020 International Society for Autism Research and Wiley Periodicals LLC

     
    more » « less
  4. Autism spectrum disorder (ASD) is a neurodevelopmental syndrome characterized by impairments in social perception and communication. Growing evidence suggests that the relationship between deficits in social perception and ASD may extend into the neurotypical population. In electroencephalography (EEG), high autism-spectrum traits in both ASD and neurotypical samples are associated with changes to the mu rhythm, an alpha-band (8–12 Hz) oscillation measured over sensorimotor cortex which typically shows reductions in spectral power during both one’s own movements and observation of others’ actions. This mu suppression is thought to reflect integration of perceptual and motor representations for understanding of others’ mental states, which may be disrupted in individuals with autism-spectrum traits. However, because spectral power is usually quantified at the group level, it has limited usefulness for characterizing individual variation in the mu rhythm, particularly with respect to autism-spectrum traits. Instead, individual peak frequency may provide a better measure of mu rhythm variability across participants. Previous developmental studies have linked ASD to slowing of individual peak frequency in the alpha band, or peak alpha frequency (PAF), predominantly associated with selective attention. Yet individual variability in the peak mu frequency (PMF) remains largely unexplored, particularly with respect to autism-spectrum traits. Here we quantified peak frequency of occipitoparietal alpha and sensorimotor mu rhythms across neurotypical individuals as a function of autism-spectrum traits. High-density 128-channel EEG data were collected from 60 participants while they completed two tasks previously reported to reliably index the sensorimotor mu rhythm: motor execution (bimanual finger tapping) and action observation (viewing of whole-body human movements). We found that individual measurement in the peak oscillatory frequency of the mu rhythm was highly reliable within participants, was not driven by resting vs. task states, and showed good correlation across action execution and observation tasks. Within our neurotypical sample, higher autism-spectrum traits were associated with slowing of the PMF, as predicted. This effect was not likely explained by volume conduction of the occipitoparietal PAF associated with attention. Together, these data support individual peak oscillatory alpha-band frequency as a correlate of autism-spectrum traits, warranting further research with larger samples and clinical populations. 
    more » « less
  5. Lay Summary

    Minimally and low verbal children and adolescents with autism (ASD‐MLV) displayed more atypical auditory behaviors (e.g., ear covering and humming) than verbally fluent participants with ASD. In ASD‐MLV participants, time spent exhibiting such behaviors was associated with receptive vocabulary deficits and weaker neural responses to changes in sound loudness. Findings suggest that individuals with ASD with both severe expressive and receptive language impairments process sounds differently.Autism Res2020, 13: 1718–1729. © 2020 International Society for Autism Research and Wiley Periodicals LLC

     
    more » « less