skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: VLC-Enabled Human-Aware Building Management System
“Smart” buildings that can sense and detect people’s presence have been in use for the past few decades, mostly using technologies that trigger reactive responses such as turning on/off heating/ventilating, lighting, security, etc. We argue that to be considered truly smart, buildings must become “aware” about the locations and activities of their inhabitants so they can proactively engage with the occupants and inform their decision making with respect to which actions to execute, by whom and where. To help assess the potential impact of “aware” buildings on their occupants, we are developing a multi-agent simulation-powered building management system that can sense human and building assets, extrapolate patterns of utilization, simulate what-if scenarios and suggest changes to user activities and resource allocation to maximize specific Key Performance Indicators (KPIs). The system is able to evaluate the implications of potential conflict resolution strategies and account for individual and collaborative activities of different types of users in semantically rich environments. Sensing in our case is based on Visible Light Communication (VLC) technology, embedded in a building’s LED lighting system. It can detect the actors, where they are located and what they do. To understand what happens in each space at any given time the information derived from the VLC system is combined with models of users’ activity schedules, profiles, and space affordances. We demonstrate our approach by hypothetically applying it to a Cardiac Catheterization Laboratory (CCL). The CCL is high-intensity hospital unit, second only to the Emergency Department in terms of the urgency of the cases it must handle. An aware building will help both patients and staff to allocate their (always scarce) resources more efficiently, saving time and alleviating stress.  more » « less
Award ID(s):
1838702
PAR ID:
10202649
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proc. 22nd International Conference on Human-Computer Interaction (HCII2020)
Volume:
2020
Page Range / eLocation ID:
207-222
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Throughout history, buildings have been considered passive containers in which occupants’ activities take place. New sensing technologies enable buildings to detect people presence and behavior. At present, this information is mostly used to trigger reactive responses, such as heating and cooling operations. We argue that truly smart environments can leverage sensed information to proactively engage with the occupants and inform decision making processes with respect to which activities to execute, by whom and where. Such ability will transform buildings from passive to active partners in the daily lives of their inhabitants. It stems from the omniscience of sensor-equipped buildings that will “know” all that is happening everywhere within (and around) them at any given moment and can predict, through simulation, the expected consequences of alternative operational decisions. Such ability is mostly relevant for hospitals and other complex buildings, where actions taken in one part of the building may affect activities in other parts of the building. We are developing a simulation-powered building management system that resolves space, actor and activity-based conflicts while harnessing data collected via visible light communication. We demonstrate this approach in a case study in the catheterization lab of a major hospital. 
    more » « less
  2. Smart buildings promise to adapt environmental conditions to the needs of occupants based on statistical analytics applied to various monitored data. While sensors for accurate monitoring of building parameters such as temperature, lighting, and air-quality abound, currently available occupancy sensors are limited to sensing of presence only, with limited accuracy. Doppler radar sensors have shown great promise for unobtrusive recognition and monitoring of occupant presence, count, activity, and cardiopulmonary vital signs. With such measures, a smart building can optimize operations not only for the most efficient use of energy and space, but also to create healthy and sustainable environments that support occupant wellness, comfort, and productivity. This paper presents an overview of Doppler radar occupancy sensors for smart building applications. 
    more » « less
  3. We present a simulation-powered dynamic building activities management system, intended to help coordinate distributed decision-making activities in sensor-equipped complex buildings, such as healthcare facilities. It provides overall “awareness” of the current state of the facility and analyzes the impact of simulated alternative future actions of each actor in every space, simultaneously. These analytics are evaluated according to Key Performance Indicators (KPI), resulting in a recommendation for enacting the most desirable outcome. A preliminary simulation study based on St. Bernardine Medical Center (SBMC) Cardiac Catheterization Lab (CCL) is presented. 
    more » « less
  4. null (Ed.)
    We present a simulation-powered dynamic building activities management system, intended to help coordinate distributed decision-making activities in sensor-equipped complex buildings, such as healthcare facilities. It provides overall “awareness” of the current state of the facility and analyzes the impact of simulated alternative future actions of each actor in every space, simultaneously. These analytics are evaluated according to Key Performance Indicators (KPI), resulting in a recommendation for enacting the most desirable outcome. A preliminary simulation study based on St. Bernardine Medical Center (SBMC) Cardiac Catheterization Lab (CCL) is presented. 
    more » « less
  5. The key to optimal occupant comfort as well as resource utilization in a smart building is to provide personalized control over smart appliances. Additionally, with an exponentially growing Internet-of-Things (IoT), reducing the need of frequent user attention and effort involving building management to control and manage an enormous number of smart devices becomes inevitable. One crucial step to enable occupant-specific personalized spaces in smart buildings is accurate identification of different occupants. In this paper, we introduce SolarWalk to show that small and unobtrusive indoor photovoltaic harvesters can identify occupants in smart home scenarios. The key observations are that i) photovoltaics are commonly used as a power source for many indoor energy-harvesting devices, ii) a PV cell's output voltage is perturbed differently when different persons pass in close range, creating an unique signature voltage trace, and iii) the voltage pattern can also determine the person' walking direction. SolarWalk identifies occupants in a smart home by training a classifier with their shadow voltage traces. SolarWalk achieves an average accuracy of 88% to identify five occupants in a home and on average 77% accurate to determine whether someone entered or exited the room. SolarWalk enables an accurate occupant identification system that is non-invasive, ubiquitous, and does not require dedicated hardware and rigorous installation. 
    more » « less