skip to main content


Title: SolarWalk: smart home occupant identification using unobtrusive indoor photovoltaic harvesters
The key to optimal occupant comfort as well as resource utilization in a smart building is to provide personalized control over smart appliances. Additionally, with an exponentially growing Internet-of-Things (IoT), reducing the need of frequent user attention and effort involving building management to control and manage an enormous number of smart devices becomes inevitable. One crucial step to enable occupant-specific personalized spaces in smart buildings is accurate identification of different occupants. In this paper, we introduce SolarWalk to show that small and unobtrusive indoor photovoltaic harvesters can identify occupants in smart home scenarios. The key observations are that i) photovoltaics are commonly used as a power source for many indoor energy-harvesting devices, ii) a PV cell's output voltage is perturbed differently when different persons pass in close range, creating an unique signature voltage trace, and iii) the voltage pattern can also determine the person' walking direction. SolarWalk identifies occupants in a smart home by training a classifier with their shadow voltage traces. SolarWalk achieves an average accuracy of 88% to identify five occupants in a home and on average 77% accurate to determine whether someone entered or exited the room. SolarWalk enables an accurate occupant identification system that is non-invasive, ubiquitous, and does not require dedicated hardware and rigorous installation.  more » « less
Award ID(s):
1823325
NSF-PAR ID:
10390828
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
BuildSys '22: Proceedings of the 9th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation
Page Range / eLocation ID:
178 to 187
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we present a multiple concurrent occupant identification approach through footstep-induced floor vibration sensing. Identification of human occupants is useful in a variety of indoor smart structure scenarios, with applications in building security, space allocation, and healthcare. Existing approaches leverage sensing modalities such as vision, acoustic, RF, and wearables, but are limited due to deployment constraints such as line-of-sight requirements, sensitivity to noise, dense sensor deployment, and requiring each walker to wear/carry a device. To overcome these restrictions, we use footstep-induced structural vibration sensing. Footstep-induced signals contain information about the occupants' unique gait characteristics, and propagate through the structural medium, which enables sparse and passive identification of indoor occupants. The primary research challenge is that multiple-person footstep-induced vibration responses are a mixture of structurally-codependent overlapping individual responses with unknown timing, spectral content, and mixing ratios. As such, it is difficult to determine which part of the signal corresponds to each occupant. We overcome this challenge through a recursive sparse representation approach based on cosine distance that identifies each occupant in a footstep event in the order that their signals are generated, reconstructs their portion of the signal, and removes it from the mixed response. By leveraging sparse representation, our approach can simultaneously identify and separate mixed/overlapping responses, and the use of the cosine distance error function reduces the influence of structural codependency on the multiple walkers' signals. In this way, we isolate and identify each of the multiple occupants' footstep responses. We evaluate our approach by conducting real-world walking experiments with three concurrent walkers and achieve an average F1 score for identifying all persons of 0.89 (1.3x baseline improvement), and with a 10-person "hybrid" dataset (simulated combination of single-walker real-world data), we identify 2, 3, and 4 concurrent walkers with a trace-level accuracy of 100%, 93%, and 73%, respectively, and observe as much as a 2.9x error reduction over a naive baseline approach. 
    more » « less
  2. Occupant identification proves crucial in many smart home applications such as automated home control and activity recognition. Previous solutions are limited in terms of deployment costs, identification accuracy, or usability. We propose SenseTribute, a novel occupant identification solution that makes use of existing and prevalent on-object sensors that are originally designed to monitor the status of objects they are attached to. SenseTribute extracts richer information content from such on-object sensors and analyzes the data to accurately identify the person interacting with the objects. This approach is based on the physical phenomenon that different occupants interact with objects in different ways. Moreover, SenseTribute may not rely on users’ true identities, so the approach works even without labeled training data. However, resolution of information from a single on-object sensor may not be sufficient to differentiate occupants, which may lead to errors in identification. To overcome this problem, SenseTribute operates over a sequence of events within a user activity, leveraging recent work on activity segmentation. We evaluate SenseTribute using real-world experiments by deploying sensors on five distinct objects in a kitchen and inviting participants to interact with the objects. We demonstrate that SenseTribute can correctly identify occupants in 96% of trials without labeled training data, while per-sensor identification yields only 74% accuracy even with training data. 
    more » « less
  3. We present an open-source wireless network and data management system for collecting and storing indoor environmental measurements and perceived comfort via participatory sensing in commercial buildings. The system, called a personal comfort and indoor environment measurement (PCIEM) platform, consists of several devices placed in office occupants’ work areas, a wireless network, and a remote database to store the data. Each device, called a PCFN (personal comfort feedback node), contains a touchscreen through which the occupant can provide feedback on their perceived comfort on-demand, and several sensors to collect environmental data. The platform is designed to be part of an indoor climate control system that can enable personalized comfort control in real-time. We describe the design, prototyping, and initial deployment of a small number of PCFNs in a commercial building. We also provide lessons learned from these steps. Application of the data collected from the PCFNs for modeling and real-time control will be reported in future work. We use hardware components that are commercial and off-the-shelf, and our software design is based on open-source tools that are freely and publicly available to enable repeatability. 
    more » « less
  4. Occupant behavior has a significant impact on building systems’ operations and efficiency. As a result, several innovative approaches have been introduced to quantify the dynamics of occupants within indoor environments, such as interactions with different building systems and the impact of various feedback and interventions to reduce the building energy consumption. To achieve this, researchers have highlighted the importance of reducing energy consumption without impacting occupant comfort. As a result, there is an increasing body of research evaluating how different theories of behavior across a variety of disciplines can explain occupant interactions with building systems. Future progress in this area calls for an in-depth understanding of behavioral theories in explaining occupant interactions with different building systems. In this paper, we have used a structured literature review approach to investigate how different psychological, sociological, and economic theories have been applied to explain occupant interactions with heating and cooling (HVAC systems), opening windows and ventilation, lighting and shading, electronic appliances, domestic hot water, as well as energy conservation behaviors. Throughout the paper, we identify the most common theories and methodologies applied within the existing research, general findings related to how occupants interact with different building systems, as well as a number of identified gaps within the literature. Finally, we provide a discussion on directions for future research studies in this area under each building system. 
    more » « less
  5. Rooftop photovoltaics (PV) and electrical vehicles (EV) have become more economically viable to residential customers. Most existing home energy management systems (HEMS) only focus on the residential occupants’ thermal comfort in terms of indoor temperature and humidity while neglecting their other behaviors or concerns. This paper aims to integrate residential PV and EVs into the HEMS in an occupant-centric manner while taking into account the occupants’ thermal comfort, clothing behaviors, and concerns on the state-of-charge (SOC) of EVs. A stochastic adaptive dynamic programming (ADP) model was proposed to optimally determine the setpoints of heating, ventilation, air conditioning (HVAC), occupant’s clothing decisions, and the EV’s charge/discharge schedule while considering uncertainties in the outside temperature, PV generation, and EV’s arrival SOC. The nonlinear and nonconvex thermal comfort model, EV SOC concern model, and clothing behavior model were holistically embedded in the ADP-HEMS model. A model predictive control framework was further proposed to simulate a residential house under the time of use tariff, such that it continually updates with optimal appliance schedules decisions passed to the house model. Cosimulations were carried out to compare the proposed HEMS with a baseline model that represents the current operational practice. The result shows that the proposed HEMS can reduce the energy cost by 68.5% while retaining the most comfortable thermal level and negligible EV SOC concerns considering the occupant’s behaviors. 
    more » « less