We consider the problem of learning causal re- lationships from relational data. Existing ap- proaches rely on queries to a relational condi- tional independence (RCI) oracle to establish and orient causal relations in such a setting. In practice, queries to a RCI oracle have to be replaced by reliable tests for RCI against available data. Relational data present several unique challenges in testing for RCI. We study the conditions under which traditional iid-based CI tests yield reliable answers to RCI queries against relational data. We show how to conduct CI tests against relational data to robustly recover the underlying relational causal struc- ture. Results of our experiments demonstrate the effectiveness of our proposed approach.
more »
« less
Towards robust relational causal discovery
We consider the problem of learning causal relationships from relational data. Existing approaches rely on queries to a relational conditional independence (RCI) oracle to establish and orient causal relations in such a setting. In practice, queries to a RCI oracle have to be replaced by reliable tests for RCI against available data. Relational data present several unique challenges in testing for RCI. We study the conditions under which traditional iid-based CI tests yield reliable answers to RCI queries against relational data. We show how to con- duct CI tests against relational data to robustly recover the underlying relational causal structure. Results of our experiments demonstrate the effectiveness of our proposed approach.
more »
« less
- PAR ID:
- 10202722
- Date Published:
- Journal Name:
- Proceedings of Machine Learning Research
- ISSN:
- 2640-3498
- Page Range / eLocation ID:
- 345-355
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Conditional independence (CI) tests play a central role in statistical inference, machine learning, and causal discovery. Most existing CI tests assume that the samples are indepen- dently and identically distributed (i.i.d.). How- ever, this assumption often does not hold in the case of relational data. We define Relational Conditional Independence (RCI), a generaliza- tion of CI to the relational setting. We show how, under a set of structural assumptions, we can test for RCI by reducing the task of test- ing for RCI on non-i.i.d. data to the problem of testing for CI on several data sets each of which consists of i.i.d. samples. We develop Kernel Relational CI test (KRCIT), a nonpara- metric test as a practical approach to testing for RCI by relaxing the structural assumptions used in our analysis of RCI. We describe re- sults of experiments with synthetic relational data that show the benefits of KRCIT relative to traditional CI tests that don’t account for the non-i.i.d. nature of relational data.more » « less
-
In constraint-based causal discovery, the existing algorithms systematically use a series of conditional independence (CI) relations observed in the data to recover an equivalence class of causal graphs in the large sample limit. One limitation of these algorithms is that CI tests lose statistical power as conditioning set size increases with finite samples. Recent research proposes to limit the conditioning set size for robust causal discovery. However, the existing algorithms require exhaustive testing of all CI relations with conditioning set sizes up to a certain integer k. This becomes problematic in practice when variables with large support are present, as it makes CI tests less reliable due to near-deterministic relationships, thereby violating the faithfulness assumption. To address this issue, we propose a causal discovery algorithm that only uses CI tests where the conditioning sets are restricted to a given set of conditioning sets including the empty set C. We call such set of CI relations IC conditionally closed. We define the notion of C-Markov equivalence: two causal graphs are C-Markov equivalent if they entail the same set of CI constraints from IC. We propose a graphical representation of C-Markov equivalence and characterize such equivalence between two causal graphs. Our proposed algorithm called the C-PC algorithm is sound for learning the C-Markov equivalence class. We demonstrate the utility of the proposed algorithm via synthetic and real-world experiments in scenarios where variables with large support or high correlation are present in the data. Our source code is available online at github.com/kenneth-lee-ch/cpc.more » « less
-
Causal inference is at the heart of empirical research in natu- ral and social sciences and is critical for scientific discovery and informed decision making. The gold standard in causal inference is performing randomized controlled trials; unfortu- nately these are not always feasible due to ethical, legal, or cost constraints. As an alternative, methodologies for causal inference from observational data have been developed in sta- tistical studies and social sciences. However, existing meth- ods critically rely on restrictive assumptions such as the study population consisting of homogeneous elements that can be represented in a single flat table, where each row is referred to as a unit. In contrast, in many real-world set- tings, the study domain naturally consists of heterogeneous elements with complex relational structure, where the data is naturally represented in multiple related tables. In this paper, we present a formal framework for causal inference from such relational data. We propose a declarative language called CaRL for capturing causal background knowledge and assumptions, and specifying causal queries using simple Datalog-like rules. CaRL provides a foundation for infer- ring causality and reasoning about the effect of complex interventions in relational domains. We present an extensive experimental evaluation on real relational data to illustrate the applicability of CaRL in social sciences and healthcare.more » « less
-
In real-world phenomena which involve mutual influence or causal effects between interconnected units, equilibrium states are typically represented with cycles in graphical models. An expressive class of graphical models, relational causal models, can represent and reason about complex dynamic systems exhibiting such cycles or feedback loops. Existing cyclic causal discovery algorithms for learning causal models from observational data assume that the data instances are independent and identically distributed which makes them unsuitable for relational causal models. At the same time, causal discovery algorithms for relational causal models assume acyclicity. In this work, we examine the necessary and sufficient conditions under which a constraint-based relational causal discovery algorithm is sound and complete for cyclic relational causal models. We introduce relational acyclification, an operation specifically designed for relational models that enables reasoning about the identifiability of cyclic relational causal models. We show that under the assumptions of relational acyclification and sigma-faithfulness, the relational causal discovery algorithm RCD is sound and complete for cyclic relational models. We present experimental results to support our claim.more » « less
An official website of the United States government

