skip to main content


Title: Design Trade-offs for Decentralized Baseband Processing in Massive MU-MIMO Systems
Massive multi-user (MU) multiple-input multiple-output (MIMO) provides high spectral efficiency by means of spatial multiplexing and fine-grained beamforming. However, conventional base-station (BS) architectures for systems with hundreds of antennas that rely on centralized baseband processing inevitably suffer from (i) excessive interconnect data rates between radio-frequency circuitry and processing fabrics, and (ii) prohibitive complexity at the centralized baseband processor. Recently, decentralized baseband processing (DBP) architectures and algorithms have been proposed, which mitigate the interconnect bandwidth and complexity bottlenecks. This paper systematically explores the design trade-offs between error-rate performance, computational complexity, and data transfer latency of DBP architectures under different system configurations and channel conditions. Considering architecture, algorithm, and numerical precision aspects, we provide practical guidelines to select the DBP architecture and algorithm that are able to realize the full benefits of massive MU-MIMO in the uplink and downlink.  more » « less
Award ID(s):
1717218 1717559
NSF-PAR ID:
10202731
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
2019 IEEE 53rd Asilomar Conference on Signals, Systems and Computers
Page Range / eLocation ID:
906 to 912
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Massive multi-user (MU) multiple-input multiple-output (MIMO) promises significant gains in spectral efficiency compared to traditional, small-scale MIMO technology. Linear equalization algorithms, such as zero forcing (ZF) or minimum mean-square error (MMSE)-based methods, typically rely on centralized processing at the base station (BS), which results in (i) excessively high interconnect and chip input/output data rates, and (ii) high computational complexity. In this paper, we investigate the achievable rates of decentralized equalization that mitigates both of these issues. We consider two distinct BS architectures that partition the antenna array into clusters, each associated with independent radio-frequency chains and signal processing hardware, and the results of each cluster are fused in a feedforward network. For both architectures, we consider ZF, MMSE, and a novel, non-linear equalization algorithm that builds upon approximate message passing (AMP), and we theoretically analyze the achievable rates of these methods. Our results demonstrate that decentralized equalization with our AMP-based methods incurs no or only a negligible loss in terms of achievable rates compared to that of centralized solutions. 
    more » « less
  2. Massive multi-user multiple-input multiple-output (MU-MIMO) enables significant gains in spectral efficiency and link reliability compared to conventional, small-scale MIMO technology. In addition, linear precoding using zero forcing or Wiener filter (WF) precoding is sufficient to achieve excellent error rate performance in the massive MU-MIMO downlink. However, these methods typically require centralized processing at the base-station (BS), which causes (i) excessively high interconnect and chip input/output data rates, and (ii) high implementation complexity. We propose two feed-forward architectures and corresponding decentralized WF precoders that parallelize precoding across multiple computing fabrics, effectively mitigating the limitations of centralized approaches. To demonstrate the efficacy of our decentralized precoders, we provide implementation results on a multi-GPU system, which show that our solutions achieve throughputs in the Gbit/s regime while achieving (near-)optimal error-rate performance in the massive MU-MIMO downlink. 
    more » « less
  3. Massive multi-user multiple-input multiple-output (MU-MIMO) enables significant gains in spectral efficiency and link reliability compared to conventional, small-scale MIMO technology. In addition, linear precoding using zero forcing or Wiener filter (WF) precoding is sufficient to achieve excellent error rate performance in the massive MU-MIMO downlink. However, these methods typically require centralized processing at the base-station (BS), which causes (i) excessively high interconnect and chip input/output data rates, and (ii) high implementation complexity. We propose two feedforward architectures and corresponding decentralized WF precoders that parallelize precoding across multiple computing fabrics, effectively mitigating the limitations of centralized approaches. To demonstrate the efficacy of our decentralized precoders, we provide implementation results on a multi-GPU system, which show that our solutions achieve throughputs in the Gbit/s regime while achieving (near-)optimal error-rate performance in the massive MU-MIMO downlink. 
    more » « less
  4. All-digital basestation (BS) architectures for millimeter-wave (mmWave) massive multi-user multiple-input multiple-output (MU-MIMO), which equip each radio-frequency chain with dedicated data converters, have advantages in spectral efficiency, flexibility, and baseband-processing simplicity over hybrid analog-digital solutions. For all-digital architectures to be competitive with hybrid solutions in terms of power consumption, novel signal-processing methods and baseband architectures are necessary. In this paper, we demonstrate that adapting the resolution of the analog-to-digital converters (ADCs) and spatial equalizer of an all-digital system to the communication scenario (e.g., the number of users, modulation scheme, and propagation conditions) enables orders-of-magnitude power savings for realistic mmWave channels. For example, for a 256-BS-antenna 16-user system supporting 1 GHz bandwidth, a traditional baseline architecture designed for a 64-user worst-case scenario would consume 23 W in 28 nm CMOS for the ADC array and the spatial equalizer, whereas a resolution-adaptive architecture is able to reduce the power consumption by 6.7×. 
    more » « less
  5. Massive multiuser (MU) multiple-input multiple-output (MIMO) promises significant improvements in spectral efficiency compared to small-scale MIMO. Typical massive MU-MIMO base-station (BS) designs rely on centralized linear data detectors and precoders which entail excessively high complexity, interconnect data rates, and chip input/output (I/O) bandwidth when executed on a single computing fabric. To resolve these complexity and bandwidth bottlenecks, we propose new decentralized algorithms for data detection and precoding that use coordinate descent. Our methods parallelize computations across multiple computing fabrics, while minimizing interconnect and I/O bandwidth. The proposed decentralized algorithms achieve near-optimal error-rate performance and multi-Gbps throughput at sub-1 ms latency when implemented on a multi-GPU cluster with half-precision floating-point arithmetic. 
    more » « less