skip to main content


Title: Resolving Isomers of Star-Branched Poly(Ethylene Glycols) by IMS-MS Using Multiply Charged Ions
Ion mobility spectrometry (IMS) mass spectrometry (MS) centers on the ability to separate gaseous structures by size, charge, shape, and followed by mass-to-charge (m/z). For oligomeric structures, improved separation is hypothesized to be related to the ability to extend structures through repulsive forces between cations electrostatically bonded to the oligomers. Here we show the ability to separate differently branched multiply charged ions of star-branched poly(ethylene glycol) oligomers (up to 2000 Da) regardless of whether formed by electrospray ionization (ESI) charged solution droplets or from charged solid particles produced directly from a surface by matrix-assisted ionization. Detailed structural characterization of isomers of the star-branched compositions was first established using a home-built high-resolution ESI IMS-MS instrument. The doubly charged ions have well-resolved drift times, achieving separation of isomers and also allowing differentiation of star-branched versus linear oligomers. An IMS-MS “snapshot” approach allows visualization of architectural dispersity and (im)purity of samples in a straightforward manner. Analyses capabilities are shown for different cations and ionization methods using commercially available traveling wave IMS-MS instruments. Analyses directly from surfaces using the new ionization processes are, because of the multiply charging, not only associated with the benefits of improved gas-phase separations, relative to that of ions produced by matrix-assisted laser desorption/ionization, but also provide the potential for spatially resolved measurements relative to ESI and other ionization methods.  more » « less
Award ID(s):
1913787
NSF-PAR ID:
10202761
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of the American Society for Mass Spectrometry
ISSN:
1044-0305
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rationale

    Examining surface protein conformations, and especially achieving this with spatial resolution, is an important goal. The recently discovered ionization processes offer spatial‐resolution measurements similar to matrix‐assisted laser desorption/ionization (MALDI) and produce charge states similar to electrospray ionization (ESI) extending higher‐mass protein applications directly from surfaces on high‐performance mass spectrometers. Studying a well‐interrogated protein by ion mobility spectrometry‐mass spectrometry (IMS‐MS) to access effects on structures using a solidvs.solvent matrix may provide insights.

    Methods

    Ubiquitin was studied by IMS‐MS using new ionization processes with commercial and homebuilt ion sources and instruments (Waters SYNAPT G2(S)) and homebuilt 2 m drift‐tube instrument; MS™ sources). Mass‐to‐charge and drift‐time (td)‐measurements are compared for ubiquitin ions obtained byinletandvacuumionization using laserspray ionization (LSI), matrix‐ (MAI) and solvent‐assisted ionization (SAI), respectively, and compared with those from ESI under conditions that are most comparable.

    Results

    Using the same solution conditions with SYNAPT G2(S) instruments, td‐distributions of various ubiquitin charge states from MAI, LSI, and SAI are similar to those from ESI using a variety of solvents, matrices, extraction voltages, a laser, and temperature only, showing subtle differences in more compact features within the elongated distribution of structures. However, on a homebuilt drift‐tube instrument, within the elongated distribution of structures, both similar and different td‐distributions are observed for ubiquitin ions obtained by MAI and ESI. MAI‐generated ions are frequently narrower in their td‐distributions.

    Conclusions

    Direct comparisons between ESI and the new ionization methods operational directly from surfaces suggest that the protein in its solution structure prior to exposure to the ionization event is either captured (frozen out) at the time of crystallization, or that the protein in the solid matrix is associated with sufficient solvent to maintain the solution structure, or, alternatively, that the observed structures are those related to what occurs in the gas phase with ESI‐ or MAI‐generated ions and not with the solution structures.

     
    more » « less
  2. Rationale

    Matrix‐assisted ionization (MAI) mass spectrometry does not require voltages, a laser beam, or added heat to initiate ionization, but it is strongly dependent on the choice of matrix and the vacuum conditions. High charge state distributions of nonvolatile analyte ions produced by MAI suggest that the ionization mechanism may be similar to that of electrospray ionization (ESI), but different from matrix‐assisted laser desorption/ionization (MALDI). While significant information is available for MAI using mass spectrometers operating at atmospheric and intermediate pressure, little is known about the mechanism at high vacuum.

    Methods

    Eleven MAI matrices were studied on a high‐vacuum time‐of‐flight (TOF) mass spectrometer using a 266 nm pulsed laser beam under otherwise typical MALDI conditions. Detailed comparisons with the commonly used MALDI matrices and theoretical prediction were made for 3‐nitrobenzonitrile (3‐NBN), which is the only MAI matrix that works well in high vacuum when irradiated with a laser.

    Results

    Screening of MAI matrices with good absorption at 266 nm but with various degrees of volatility and laser energies suggests that volatility and absorption at the laser wavelength may be necessary, but not sufficient, criteria to explain the formation of multiply charged analyte ions. 3‐NBN produces intact, highly charged ions of nonvolatile analytes in high‐vacuum TOF with the use of a laser, demonstrating that ESI‐like ions can be produced in high vacuum. Theoretical calculations and mass spectra suggest that thermally induced proton transfer, which is the major ionization mechanism in MALDI, is not important with the 3‐NBN matrix at 266 nm laser wavelength. 3‐NBN:analyte crystal morphology is, however, important in ion generation in high vacuum.

    Conclusions

    The 3‐NBN MAI matrix produces intact, highly charged ions of nonvolatile compounds in high‐vacuum TOF mass spectrometers with the aid of ablation and/or heating by laser irradiation, and shows a different ionization mechanism from that of typical MALDI matrices.

     
    more » « less
  3. Rationale

    New ionization processes have been developed for biological mass spectrometry (MS) in which the matrix lifts the nonvolatile analyte into the gas phase as ions without any additional energy input. We rationalized that additional fundamental knowledge is needed to assess analytical utility for the field of synthetic polymers and additives.

    Methods

    Different mass spectrometers (Thermo Orbitrap (Q‐)Exactive (Focus); Waters SYNAPT G2(S)) were employed. The formation of multiply charged polymer ions upon exposure of the matrix/analyte(/salt) sample to sub‐atmospheric pressure directly from the solid state and surfaces facilitates the use of advanced mass spectrometers for detection of polymeric materials including consumer products (e.g., gum).

    Results

    Astonishingly, using nothing more than a small molecule matrix compound (e.g., 2‐methyl‐2‐nitropropane‐1,3‐diol or 3‐nitrobenzonitrile) and a salt (e.g., mono‐ or divalent cation(s)), such samples upon exposure to sub‐atmospheric pressure transfer nonvolatile polymersandnonvolatile salts into the gas phase as multiply charged ions. These successes contradict the conventional understanding of ionization in MS, because can nonvolatile polymers be lifted in the gas phase as ions not only by as little as a volatile matrix but also by the salt required for ionizing the analyte through noncovalent metal cation adduction(s). Prototypevacuummatrix‐assisted ionization (vMAI) and automated sources using a contactless approach are demonstrated for direct analyses of synthetic polymers and plasticizers, minimizing the risk of contamination using direct sample introduction into the mass spectrometer vacuum.

    Conclusions

    Direct ionization methods from surfaces without the need of high voltage, a laser, or even applied heat are demonstrated for characterization of detailed materials using (ultra)high‐resolution and accurate mass measurements enabled by the multiply charged ions extending the mass range of high‐performance mass spectrometers and use of a split probe sample introduction device. Our vision is that, with further development of fundamentals and dedicated sources, both spatial‐ and temporal‐resolution measurements are within reach if sensitivity is addressed for decreasing sample‐size measurements.

     
    more » « less
  4. Rationale

    Coordinatively driven self‐assembly of transition metal ions and bidentate ligands gives rise to organometallic complexes that usually contain superimposed isobars, isomers, and conformers. In this study, the double dispersion ability of ion mobility mass spectrometry (IM‐MS) was used to provide a comprehensive structural characterization of the self‐assembled supramolecular complexes by their mass and charge, revealed by the MS event, and their shape and collision cross‐section (Ω), revealed by the IM event.

    Methods

    Self‐assembled complexes were synthesized by reacting a bis(terpyridine) ligand exhibiting a 60odihedral angle between the two ligating terpyridine sites (T) with divalent Zn, Ni, Cd, or Fe. The products were isolated as (Metal2+[T])n(PF6)2nsalts and analyzed using IM‐MS after electrospray ionization (ESI) which produced several charge states from eachn‐mer, depending on the number of PF6ˉ anions lost upon ESI. Experimental Ω data, derived using IM‐MS, and computational Ω predictions were used to elucidate the size and architecture of the complexes.

    Results

    Only macrocyclic dimers, trimers, and tetramers were observed with Cd2+, whereas Zn2+formed the same plus hexameric complexes. These two metals led to the simplest product distributions and no linear isomers. In sharp contrast, Ni2+and Fe2+formed all possible ring sizes from dimer to hexamer as well as various linear isomers. The experimental and theoretical Ω data indicated rather planar macrocyclic geometries for the dimers and trimers, twisted 3D architectures for the larger rings, and substantially larger sizes with spiral conformation for the linear congeners. Adding PF6ˉ to the same complex was found to mainly cause size contraction due to new stabilizing anion–cation interactions.

    Conclusions

    Complete structural identification could be accomplished using ESI‐IM‐MS. Our results affirm that self‐assembly with Cd2+and Zn2+proceeds through reversible equilibria that generate the thermodynamically most stable structures, encompassing exclusively macrocyclic architectures that readily accommodate the 60oligand used. In contrast, complexation with Ni2+and Fe2+, which form stronger coordinative bonds, proceeds through kinetic control, leading to more complex mixtures and kinetically trapped less stable architectures, such as macrocyclic pentamers and linear isomers.

     
    more » « less
  5. Rationale

    The developments of new ionization technologies based on processes previously unknown to mass spectrometry (MS) have gained significant momentum. Herein we address the importance of understanding these unique ionization processes, demonstrate the new capabilities currently unmet by other methods, and outline their considerable analytical potential.

    Methods

    Theinletandvacuumionization methods of solvent‐assisted ionization (SAI), matrix‐assisted ionization (MAI), and laserspray ionization can be used with commercial and dedicated ion sources producing ions from atmospheric or vacuum conditions for analyses of a variety of materials including drugs, lipids, and proteins introduced from well plates, pipet tips and plate surfaces with and without a laser using solid or solvent matrices. Mass spectrometers from various vendors are employed.

    Results

    Results are presented highlighting strengths relative to ionization methods of electrospray ionization (ESI) and matrix‐assisted laser desorption/ionization. We demonstrate the utility of multi‐ionization platforms encompassing MAI, SAI, and ESI and enabling detection of what otherwise is missed, especially when directly analyzing mixtures. Unmatched robustness is achieved with dedicated vacuum MAI sources with mechanical introduction of the sample to the sub‐atmospheric pressure (vacuumMAI). Simplicity and use of a wide array of matrices are attained using a conduit (inletionization), preferably heated, with sample introduction from atmospheric pressure. Tissue, whole blood, urine (including mouse, chicken, and human origin), bacteria strains and chemical on‐probe reactions are analyzed directly and, especially in the case ofvacuumionization, without concern of carryover or instrument contamination.

    Conclusions

    Examples are provided highlighting the exceptional analytical capabilities associated with the novel ionization processes in MS that reduce operational complexity while increasing speed and robustness, achieving mass spectra with low background for improved sensitivity, suggesting the potential of this simple ionization technology to drive MS into areas currently underserved, such as clinical and medical applications.

     
    more » « less