RationaleNew ionization processes have been developed for biological mass spectrometry (MS) in which the matrix lifts the nonvolatile analyte into the gas phase as ions without any additional energy input. We rationalized that additional fundamental knowledge is needed to assess analytical utility for the field of synthetic polymers and additives. MethodsDifferent mass spectrometers (Thermo Orbitrap (Q‐)Exactive (Focus); Waters SYNAPT G2(S)) were employed. The formation of multiply charged polymer ions upon exposure of the matrix/analyte(/salt) sample to sub‐atmospheric pressure directly from the solid state and surfaces facilitates the use of advanced mass spectrometers for detection of polymeric materials including consumer products (e.g., gum). ResultsAstonishingly, using nothing more than a small molecule matrix compound (e.g., 2‐methyl‐2‐nitropropane‐1,3‐diol or 3‐nitrobenzonitrile) and a salt (e.g., mono‐ or divalent cation(s)), such samples upon exposure to sub‐atmospheric pressure transfer nonvolatile polymersandnonvolatile salts into the gas phase as multiply charged ions. These successes contradict the conventional understanding of ionization in MS, because can nonvolatile polymers be lifted in the gas phase as ions not only by as little as a volatile matrix but also by the salt required for ionizing the analyte through noncovalent metal cation adduction(s). Prototypevacuummatrix‐assisted ionization (vMAI) and automated sources using a contactless approach are demonstrated for direct analyses of synthetic polymers and plasticizers, minimizing the risk of contamination using direct sample introduction into the mass spectrometer vacuum. ConclusionsDirect ionization methods from surfaces without the need of high voltage, a laser, or even applied heat are demonstrated for characterization of detailed materials using (ultra)high‐resolution and accurate mass measurements enabled by the multiply charged ions extending the mass range of high‐performance mass spectrometers and use of a split probe sample introduction device. Our vision is that, with further development of fundamentals and dedicated sources, both spatial‐ and temporal‐resolution measurements are within reach if sensitivity is addressed for decreasing sample‐size measurements.
more »
« less
Sublimation Driven Ionization for Use in Mass Spectrometry: Mechanistic Implications
Sublimation has been known at least since the middle ages. This process is frequently taught in schools through use of phase diagrams. Astonishingly, such a well-known process appears to still harbor secrets. Under conditions in which compound sublimation occurs, gas-phase ions are frequently detected using mass spectrometry. This was exploited in matrix-assisted ionization in vacuum vMAI) by adding analyte to subliming compounds used as matrices. Good vMAI matrices were those that ionize the added analyte with high sensitivity, but even matrices that fail this test often produce ions of likely matrix impurities suggesting that they may be good matrices for some compound types. We also show that binary matrices may be manipulated to provide desired properties such as fast analyses and improved sensitivity. These results imply that sublimation in some cases is more complicated than just molecules leaving a surface and that understanding the physical force responsible, and how the nonvolatile compound becomes charged, could lead to improved ionization efficiency for mass spectrometry. Here we provide insights into this process and an explanation of why this unexpected phenomenon has not previously been reported.
more »
« less
- Award ID(s):
- 1913787
- PAR ID:
- 10202767
- Date Published:
- Journal Name:
- Journal of the American Society for Mass Spectrometry
- ISSN:
- 1044-0305
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A new matrix framework is presented in this studyfor the improved ionization efficiency of complex mixtures by matrix-assisted laser desorption ionization (MALDI) mass spectrometry/imaging. Five nitro indole (NI) derivatives [3-methyl-4-nitro-1H-indole (3,4-MNI), 3-methyl-6-nitro-1H-indole(3,6-MNI), 2,3-dimethyl-4-nitro-1H-indole (2,3,4-DMNI), 2,3-dimethyl-6-nitro-1H-indole (2,3,6-DMNI), and 4-nitro-1H-indole(4-NI)] were synthesized and shown to produce both positive and negative ions with a broad class of analytes as MALDI matrices. NI matrices were compared to several common matrices, such as 2,5-dihydroxybenzoic acid (DHB), alpha-cyano-4-hydroxylcinnamicacid (CHCA), sinapinic acid (SA), 1,5-diaminonaphthelene (1,5-DAN), and 9-aminoacridine (9-AA), for the analysis of lipid, peptide, protein, glycan, and perfluorooctanesulfonic acid (PFOS) compounds. 3,4-MNI demonstrated the best performance among the NI matrices. This matrix resulted in reduced ion suppression and better detection sensitivity for complex mixtures, for example, egg lipids/milk proteins/PFOS in tap water, while 2,3,6-DMNI was the best matrix for blueberry tissue imaging. Several important aspects of this work are reported: (1) dual-polarity ion production with NI matrices and complex mixtures; (2) quantitative analysis of PFOS with a LOQ of 0.5 ppb in tap water and 0.05 ppb in MQ water (without solid phase extraction enrichment), with accuracy and precision within 5%; (3) MALDI imaging with 2,3,6-DMNI as a matrix for plant metabolite/lipid identification with ionization enhancement in the negative ion mode m/z 600−900 region; and (4) development of a thin film deposition under/above tissue method for MALDI imaging with a vacuum sublimation matrix on a high-vacuum MALDI instrument.more » « less
-
Matrix effects can significantly impede the accuracy, sensitivity, and reliability of separation techniques presenting a formidable challenge to the analytical process. It is crucial to address matrix effects to achieve accurate and precise measurements in complex matrices. The multifaceted nature of matrix effects which can be influenced by factors such as target analyte, sample preparation protocol, composition, and choice of instrument necessitates a pragmatic approach when analyzing complex matrices. This review aims to highlight common challenges associated with matrix effects throughout the entire analytical process with emphasis on gas chromatography‐mass spectrometry, liquid chromatography‐mass spectrometry, and sample preparation techniques. These techniques are susceptible to matrix effects that could lead to ion suppression/enhancement or impact the analyte signal at various stages of the analytical workflow. The assessment, quantification, and mitigation of matrix effects are necessary in developing any analytical method. Strategies can be implemented to reduce or eliminate the matrix effect by changing the type of ionization, improving extraction and clean‐up methods, optimization of chromatography conditions, and corrective calibration methods. While development of an effective strategy to completely mitigate matrix effects remains elusive, an integrated approach that combines sample preparation, analytical extraction, and effective instrumental analysis remains the most promising avenue for identifying and resolving matrix effects.more » « less
-
Abstract Mass spectrometry imaging (MSI) has become an important analytical tool for the label‐free chemical imaging of diverse molecules in biological specimens. This minireview surveys some emerging methods in the context of factors that can lead to inaccurate information in MSI, chemical and spatial aberrations, along with their common sources. Matrix‐assisted laser desorption ionization, based on organic matrices, has become the most widely used MSI technique for biomolecules. However, due to inherent limitations associated with the use of organic matrices, for example, heterogeneous matrix‐analyte cocrystallization, and spectral interferences due to the matrix, laser desorption ionization (LDI) from inorganic and nanophotonic platforms has emerged as an alternative MSI modality with complementary advantages. In this review, inorganic and nanophotonic platforms for LDI‐MSI, their applications in imaging, notable merits, and limitations are described.more » « less
-
null (Ed.)This Perspective covers discovery and mechanistic aspects as well as initial applications of novel ioni-zation processes for use in mass spectrometry that guided us in a series of subsequent discoveries, in-strument developments, and commercialization. With all likelihood, vacuum matrix-assisted ionization on an intermediate pressure matrix-assisted laser desorption/ionization source without the use of a laser, high voltages, or any other added energy was the defining turning point from which key developments grew that were at the time unimaginable, and continue to surprise us in its simplistic preeminence, and is therefore a special focus here. We, and others, have demonstrated exceptional analytical utility with-out a complete understanding of the underlying mechanism. Our current research is focused on how best to understand, improve, and use these novel ionization processes through dedicated platform and source developments which convert volatile and nonvolatile compounds from solid or liquid matrices into gas-phase ions for analysis by mass spectrometry using e.g., mass-selected fragmentation and ion mobility spectrometry to provide reproducible, accurate, and sometimes improved mass and drift time resolution. The combination of research and discoveries demonstrated multiple advantages of the new ionization processes and established the basis of the successes that lead to the Biemann Medal and this Perspective. How the new ionization processes relate to traditional ionization is also presented, as well as how these technologies can be utilized in tandem through instrument modification and implementa-tion to increase coverage of complex materials through complementary strengths.more » « less
An official website of the United States government

