Abstract Dynamic microcapsules are reported that exhibit shell membranes with fast and reversible changes in permeability in response to external stimuli. A hydrophobic anhydride monomer is employed in the thiol–ene polymerization as a disguised precursor for the acid‐containing shells; this enables the direct encapsulation of aqueous cargo in the liquid core using microfluidic fabrication of water‐in‐oil‐in‐water double emulsion drops. The poly(anhydride) shells hydrolyze in their aqueous environment without further chemical treatment, yielding cross‐linked poly(acid) microcapsules that exhibit trigger‐responsive and reversible property changes. The microcapsule shell can actively be switched numerous times between impermeable and permeable due to the exceptional mechanical properties of the thiol–ene network that prevent rupture or failure of the membrane, allowing it to withstand the mechanical stresses imposed on the capsule during the dynamic property changes. The permeability and molecular weight cutoff of the microcapsules can dynamically be controlled with triggers such as pH and ionic environment. The reversibly triggered changes in permeability of the shell exhibit a response time of seconds, enabling actively adjustable release profiles, as well as on‐demand capture, trapping, and release of cargo molecules with molecular selectivity and fast on‐off rates.
more »
« less
Hydrogel microcapsules with photocatalytic nanoparticles for removal of organic pollutants
Droplet-based microfluidics is used to fabricate thin shell hydrogel microcapsules for the removal of methylene blue (MB) from aqueous solutions. The microcapsules composed of a poly(methacrylic acid) hydrogel shell exhibit unique properties, including permeation, separation, purification, and reaction of molecular species. Photocatalytic TiO 2 and ZnO nanoparticles encapsulated in the microcapsules, i.e. photocatalyst in capsule (PIC), are used to remove organic pollutants using an adsorption–oxidation mechanism. A prototype flow microreactor is assembled to demonstrate a controllable water purification approach in short time using photocatalysts. Our studies of aqueous and homogeneous hydrogel environments for the photocatalysts provide important insights into understanding the effectiveness of MB removal. Hydrogel capsules have MB removal rate comparable to homogeneous particles. Further reduction of both capsule and photocatalyst sizes can potentially aid in quicker water purification.
more »
« less
- PAR ID:
- 10202797
- Date Published:
- Journal Name:
- Environmental Science: Nano
- Volume:
- 7
- Issue:
- 2
- ISSN:
- 2051-8153
- Page Range / eLocation ID:
- 656 to 664
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An engineered 3D architectural network of the biopolymeric hydrogel can mimic the native cell environment that promotes cell infiltration and growth. Among several bio-fabricated hydrogel structures, core–shell microcapsules inherit the potential of cell encapsulation to ensure the growth and transport of cells and cell metabolites. Herein, a co-axial electrostatic encapsulation strategy is used to create and encapsulate the cells into chitin nanofibrils integrated alginate hydrogel microcapsules. Three parameters that are critical in the electrostatic encapsulation process, hydrogel composition, flow rate, and voltage were optimized. The physicochemical characterization including structure, size, and stability of the core–shell microcapsules was analyzed by scanning electron microscope (SEM), FTIR, and mechanical tests. The cellular responses of the core–shell microcapsules were evaluated through in vitro cell studies by encapsulating NIH/3T3 fibroblast cells. Notably, the bioactive microcapsule showed that the cell viability was found excellent for more than 2 weeks. Thus, the results of this core–shell microcapsule showed a promising approach to creating 3D hydrogel networks suitable for different biomedical applications such as in vitro tissue models for toxicity studies, wound healing, and tissue repair.more » « less
-
Abstract While organic photocatalysts provide increasingly versatile chemical pathways under mild conditions, their long‐term stability remains understudied. Here, the photobleaching behavior of xanthene dye photocatalysts is investigated. Rose Bengal, Eosin Y, and fluorescein are studied when in solution, when grafted to glass beads, and when incorporated into polymer brushes that are tethered to glass beads. This provides a comparison between xanthene's stability as a homogeneous and as a heterogeneous photocatalyst. Photobleaching is investigated using UV–vis, diffuse reflectance UV–vis (DR UV–vis), and fluorescence microscopy. Xanthene dyes as homogeneous photocatalysts exhibit the highest photostability, while the grafted systems appeared to fade more rapidly. Notably, heterogenization appears to have different effects based on the photocatalyst system, and further altering the photocatalyst environment with reagents may improve stability.more » « less
-
null (Ed.)Carbon dots (C-dots) were facilely fabricated via a hydrothermal method and fully characterized. Our study shows that the as-synthesized C-dots are nontoxic, negatively charged spherical particles (average diameter 4.7 nm) with excellent water dispersion ability. Furthermore, the C-dots have a rich presence of surface functionalities such as hydroxyls and carboxyls as well as amines. The significance of the C-dots as highly efficient photocatalysts for rhodamine B (RhB) and methylene blue (MB) degradation was explored. The C-dots demonstrate excellent photocatalytic activity, achieving 100% of RhB and MB degradation within 170 min. The degradation rate constants for RhB and MB were 1.8 × 10−2 and 2.4 × 10−2 min−1, respectively. The photocatalytic degradation performances of the C-dots are comparable to those metal-based photocatalysts and generally better than previously reported C-dots photocatalysts. Collectively considering the excellent photocatalytic activity toward organic dye degradation, as well as the fact that they are facilely synthesized with no need of further doping, compositing, and tedious purification and separation, the C-dots fabricated in this work are demonstrated to be a promising alternative for pollutant degradation and environment protection.more » « less
-
If hydrogen evolution photocatalysis are to be deployed at industrial scale, the synthesis of these photocatalytic materials must be both economically and environmentally scalable. This suggests that we must move towards green synthesis of earth-abundant photocatalysts while also maintaining high catalytic performance. Herein, we present the enzymatically driven, aqueous phase, low temperature, synthesis of an earth-abundant nickel sulfide (Ni x S y ) hydrogen evolution cocatalyst, and its integration into a CdS/Ni x S y heterostructured photocatalyst. This resulting photocatalyst provides hydrogen evolution rates (10 500 μmol h −1 g −1 ) comparable to photocatalysts prepared by more traditional routes. Furthermore, the Ni x S y is demonstrated to provide similar activity enhancement to the more traditional, but also more expensive platinum cocatalysts. To achieve this result, we carefully studied and engineered the synthesis environment to maintain enzyme activity towards HS − production while sustaining a sufficient concentration of free Ni 2+ in solution to enable reaction and formation of Ni x S y . Ultimately, this work provides a methodology to control the coordination of metal precursors in low temperature, aqueous systems to allow for precipitation of catalytically active materials and demonstrates the viability of green synthesis pathways for photocatalysts.more » « less