skip to main content


Title: Controversial stimuli: Pitting neural networks against each other as models of human cognition

Distinct scientific theories can make similar predictions. To adjudicate between theories, we must design experiments for which the theories make distinct predictions. Here we consider the problem of comparing deep neural networks as models of human visual recognition. To efficiently compare models’ ability to predict human responses, we synthesize controversial stimuli: images for which different models produce distinct responses. We applied this approach to two visual recognition tasks, handwritten digits (MNIST) and objects in small natural images (CIFAR-10). For each task, we synthesized controversial stimuli to maximize the disagreement among models which employed different architectures and recognition algorithms. Human subjects viewed hundreds of these stimuli, as well as natural examples, and judged the probability of presence of each digit/object category in each image. We quantified how accurately each model predicted the human judgments. The best-performing models were a generative analysis-by-synthesis model (based on variational autoencoders) for MNIST and a hybrid discriminative–generative joint energy model for CIFAR-10. These deep neural networks (DNNs), which model the distribution of images, performed better than purely discriminative DNNs, which learn only to map images to labels. None of the candidate models fully explained the human responses. Controversial stimuli generalize the concept of adversarial examples, obviating the need to assume a ground-truth model. Unlike natural images, controversial stimuli are not constrained to the stimulus distribution models are trained on, thus providing severe out-of-distribution tests that reveal the models’ inductive biases. Controversial stimuli therefore provide powerful probes of discrepancies between models and human perception.

 
more » « less
Award ID(s):
1948004
PAR ID:
10202821
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
47
ISSN:
0027-8424
Page Range / eLocation ID:
p. 29330-29337
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding how human brains interpret and process information is important. Here, we investigated the selectivity and inter-individual differences in human brain responses to images via functional MRI. In our first experiment, we found that images predicted to achieve maximal activations using a group level encoding model evoke higher responses than images predicted to achieve average activations, and the activation gain is positively associated with the encoding model accuracy. Furthermore, anterior temporal lobe face area (aTLfaces) and fusiform body area 1 had higher activation in response to maximal synthetic images compared to maximal natural images. In our second experiment, we found that synthetic images derived using a personalized encoding model elicited higher responses compared to synthetic images from group-level or other subjects’ encoding models. The finding of aTLfaces favoring synthetic images than natural images was also replicated. Our results indicate the possibility of using data-driven and generative approaches to modulate macro-scale brain region responses and probe inter-individual differences in and functional specialization of the human visual system.

     
    more » « less
  2. Though generative adversarial networks (GANs) are prominent models to generate realistic and crisp images, they are unstable to train and suffer from the mode collapse problem. The problems of GANs come from approximating the intrinsic discontinuous distribution transform map with continuous DNNs. The recently proposed AE-OT model addresses the discontinuity problem by explicitly computing the discontinuous optimal transform map in the latent space of the autoencoder. Though have no mode collapse, the generated images by AE-OT are blurry. In this paper, we propose the AE-OT-GAN model to utilize the advantages of the both models: generate high quality images and at the same time overcome the mode collapse problems. Specifically, we firstly embed the low dimensional image manifold into the latent space by autoencoder (AE). Then the extended semi-discrete optimal transport (SDOT) map is used to generate new latent codes. Finally, our GAN model is trained to generate high quality images from the latent distribution induced by the extended SDOT map. The distribution transform map from this dataset related latent distribution to the data distribution will be continuous, and thus can be well approximated by the continuous DNNs. Additionally, the paired data between the latent codes and the real images gives us further restriction about the generator and stabilizes the training process. Experiments on simple MNIST dataset and complex datasets like CIFAR10 and CelebA show the advantages of the proposed method. 
    more » « less
  3. The recent wave of large-scale text-to-image diffusion models has dramatically increased our text-based image generation abilities. These models can generate realistic images for a staggering variety of prompts and exhibit impressive compositional generalization abilities. Almost all use cases thus far have solely focused on sampling; however, diffusion models can also provide conditional density estimates, which are useful for tasks beyond image generation. In this paper, we show that the density estimates from large-scale text-to-image diffusion models like Stable Diffusion can be leveraged to perform zero-shot classification without any additional training. Our generative approach to classification, which we call Diffusion Classifier, attains strong results on a variety of benchmarks and outperforms alternative methods of extracting knowledge from diffusion models. Although a gap remains between generative and discriminative approaches on zero-shot recognition tasks, our diffusion-based approach has significantly stronger multimodal compositional reasoning ability than competing discriminative approaches. Finally, we use Diffusion Classifier to extract standard classifiers from class-conditional diffusion models trained on ImageNet. Our models achieve strong classification performance using only weak augmentations and exhibit qualitatively better "effective robustness" to distribution shift. Overall, our results are a step toward using generative over discriminative models for downstream tasks. 
    more » « less
  4. The paper develops a methodology for the online built-in self-testing of deep neural network (DNN) accelerators to validate the correct operation with respect to their functional specifications. The DNN of interest is realized in the hardware to perform in-memory computing using non-volatile memory cells as computational units. Assuming a functional fault model, we develop methods to generate pseudorandom and structured test patterns to detect hardware faults. We also develop a test-sequencing strategy that combines these different classes of tests to achieve high fault coverage. The testing methodology is applied to a broad class of DNNs trained to classify images from the MNIST, Fashion-MNIST, and CIFAR-10 datasets. The goal is to expose hardware faults which may lead to the incorrect classification of images. We achieve an average fault coverage of 94% for these different architectures, some of which are large and complex. 
    more » « less
  5. Nowadays, to assess and document construction and building performance, large amount of visual data are captured and stored through camera equipped platforms such as wearable cameras, unmanned aerial/ground vehicles, and smart phones. However, due to the nonstop fashion in recording such visual data, not all of the frames in captured consecutive footages are intentionally taken, and thus not every frame is worthy of being processed for construction and building performance analysis. Since many frames will simply have non-construction related contents, before processing the visual data, the content of each recorded frame should be manually investigated depending on the association with the goal of the visual assessment. To address such challenges, this paper aims to automatically filter construction big visual data that requires no human annotations. To overcome challenges in pure discriminative approach using manually labeled images, we construct a generative model with unlabeled visual dataset, and use it to find construction-related frames in big visual dataset from jobsites. First, through composition-based snap point detection together with domain adaptation, we filter and remove most of accidently recorded frames in the footage. Then, we create discriminative classifier trained with visual data from jobsites to eliminate non-construction related images. To evaluate the reliability of the proposed method, we have obtained the ground truth based on human judgment for each photo in our testing dataset. Despite learning without any explicit labels, the proposed method shows a reasonable practical range of accuracy, which generally outperforms prior snap point detection. Through the case studies, the fidelity of the algorithm is discussed in detail. By being able to focus on selective visual data, practitioners will spend less time on browsing large amounts of visual data; rather spend more time on looking at how to leverage the visual data to facilitate decision-makings in built environments. 
    more » « less