Abstract Argumentation, a key scientific practice presented in theFramework for K-12 Science Education, requires students to construct and critique arguments, but timely evaluation of arguments in large-scale classrooms is challenging. Recent work has shown the potential of automated scoring systems for open response assessments, leveraging machine learning (ML) and artificial intelligence (AI) to aid the scoring of written arguments in complex assessments. Moreover, research has amplified that the features (i.e., complexity, diversity, and structure) of assessment construct are critical to ML scoring accuracy, yet how the assessment construct may be associated with machine scoring accuracy remains unknown. This study investigated how the features associated with the assessment construct of a scientific argumentation assessment item affected machine scoring performance. Specifically, we conceptualized the construct in three dimensions: complexity, diversity, and structure. We employed human experts to code characteristics of the assessment tasks and score middle school student responses to 17 argumentation tasks aligned to three levels of a validated learning progression of scientific argumentation. We randomly selected 361 responses to use as training sets to build machine-learning scoring models for each item. The scoring models yielded a range of agreements with human consensus scores, measured by Cohen’s kappa (mean = 0.60; range 0.38 − 0.89), indicating good to almost perfect performance. We found that higher levels ofComplexityandDiversity of the assessment task were associated with decreased model performance, similarly the relationship between levels ofStructureand model performance showed a somewhat negative linear trend. These findings highlight the importance of considering these construct characteristics when developing ML models for scoring assessments, particularly for higher complexity items and multidimensional assessments.
more »
« less
Comparison of Machine Learning Performance Using Analytic and Holistic Coding Approaches Across Constructed Response Assessments Aligned to a Science Learning Progression
Abstract We systematically compared two coding approaches to generate training datasets for machine learning (ML): (i) a holistic approach based on learning progression levels and (ii) a dichotomous, analytic approach of multiple concepts in student reasoning, deconstructed from holistic rubrics. We evaluated four constructed response assessment items for undergraduate physiology, each targeting five levels of a developing flux learning progression in an ion context. Human-coded datasets were used to train two ML models: (i) an 8-classification algorithm ensemble implemented in the Constructed Response Classifier (CRC), and (ii) a single classification algorithm implemented in LightSide Researcher’s Workbench. Human coding agreement on approximately 700 student responses per item was high for both approaches with Cohen’s kappas ranging from 0.75 to 0.87 on holistic scoring and from 0.78 to 0.89 on analytic composite scoring. ML model performance varied across items and rubric type. For two items, training sets from both coding approaches produced similarly accurate ML models, with differences in Cohen’s kappa between machine and human scores of 0.002 and 0.041. For the other items, ML models trained with analytic coded responses and used for a composite score, achieved better performance as compared to using holistic scores for training, with increases in Cohen’s kappa of 0.043 and 0.117. These items used a more complex scenario involving movement of two ions. It may be that analytic coding is beneficial to unpacking this additional complexity.
more »
« less
- PAR ID:
- 10203032
- Date Published:
- Journal Name:
- Journal of Science Education and Technology
- ISSN:
- 1059-0145
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Framework for K-12 Science Education recognizes modeling as an essential practice for building deep understanding of science. Modeling assessments should measure the ability to integrate Disciplinary Core Ideas and Crosscutting Concepts. Machine learning (ML) has been utilized to score and provide feedback on open-ended Learning Progression (LP)-aligned assessments. Analytic rubrics have been shown to be easier to evaluate the validity of ML-based scores. A possible drawback of using analytic rubrics is the potential for oversimplification of integrated ideas. We demonstrate the deconstruction of a 3D holistic rubric for modeling assessments aligned LP for Physical Science. We describe deconstructing this rubric into analytic categories for ML training and to preserve its 3D nature.more » « less
-
Few studies have compared Large Language Models (LLMs) to traditional Machine Learning (ML)-based automated scoring methods in terms of accuracy, ethics, and economics. Using a corpus of 1000 expert-scored and interview-validated scientific explanations derived from the ACORNS instrument, this study employed three LLMs and the ML-based scoring engine, EvoGrader. We measured scoring reliability (percentage agreement, kappa, precision, recall, F1), processing time, and explored contextual factors like ethics and cost. Results showed that with very basic prompt engineering, ChatGPT-4o achieved the highest performance across LLMs. Proprietary LLMs outperformed open-weight LLMs for most concepts. GPT-4o achieved robust but less accurate scoring than EvoGrader (~500 additional scoring errors). Ethical concerns over data ownership, reliability, and replicability over time were LLM limitations. EvoGrader offered superior accuracy, reliability, and replicability, but required, in its development a large, high-quality, human-scored corpus, domain expertise, and restricted assessment items. These findings highlight the diversity of considerations that should be used when considering LLM and ML scoring in science education. Despite impressive LLM advances, ML approaches may remain valuable in some contexts, particularly those prioritizing precision, reliability, replicability, privacy, and controlled implementation.more » « less
-
Involving students in scientific modeling practice is one of the most effective approaches to achieving the next generation science education learning goals. Given the complexity and multirepresentational features of scientific models, scoring student-developed models is time- and cost-intensive, remaining one of the most challenging assessment practices for science education. More importantly, teachers who rely on timely feedback to plan and adjust instruction are reluctant to use modeling tasks because they could not provide timely feedback to learners. This study utilized machine learn- ing (ML), the most advanced artificial intelligence (AI), to develop an approach to automatically score student- drawn models and their written descriptions of those models. We developed six modeling assessment tasks for middle school students that integrate disciplinary core ideas and crosscutting concepts with the modeling practice. For each task, we asked students to draw a model and write a description of that model, which gave students with diverse backgrounds an opportunity to represent their understanding in multiple ways. We then collected student responses to the six tasks and had human experts score a subset of those responses. We used the human-scored student responses to develop ML algorithmic models (AMs) and to train the computer. Validation using new data suggests that the machine-assigned scores achieved robust agreements with human consent scores. Qualitative analysis of student-drawn models further revealed five characteristics that might impact machine scoring accuracy: Alternative expression, confusing label, inconsistent size, inconsistent position, and redundant information. We argue that these five characteristics should be considered when developing machine-scorable modeling tasks.more » « less
-
Education researchers have proposed that qualitative and emerging computational machine learning (ML) approaches can be productively combined to advance analyses of student-generated artifacts for evidence of engagement in scientific practices. We applied such a combined approach to written arguments excerpted from university students’ biology laboratory reports. These texts are lengthy and contain multiple different features that could be attended to in analysis. We present two outcomes of this combined analysis that illustrate possible affordances of combined workflows: 1) Comparing ML and human-generated scores allowed us to identify and reanalyze mismatches, increasing our overall confidence in the coding; and 2) ML-identified word clusters allowed us to interpret the overlap in meaning between the original coding scheme and the ML predicted scores, providing insight into which features of students’ writing can be used to differentiate rote from more meaningful engagement in scientific argumentation.more » « less
An official website of the United States government

