Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This article builds on the work of Scott et al. (Scott EE, Cerchiara J, McFarland JL, Wenderoth MP, Doherty JH. J Res Sci Teach 1: 37, 2023) and Shiroda et al. (Shiroda M, Fleming MP, Haudek KC. Front Educ 8: 989836, 2023) to quantitatively examine student language in written explanations of mass balance across six contexts using constructed response assessments. These results present an evaluation of student mass balance language and provide researchers and practitioners with tools to assist students in constructing scientific mass balance reasoning explanations.more » « less
-
We novelly applied established ecology methods to quantify and compare language diversity within a corpus of short written student texts. Constructed responses (CRs) are a common form of assessment but are difficult to evaluate using traditional methods of lexical diversity due to text length restrictions. Herein, we examined the utility of ecological diversity measures and ordination techniques to quantify differences in short texts by applying these methods in parallel to traditional text analysis methods to a corpus of previously studied college student CRs. The CRs were collected at two time points (Timing), from three types of higher-ed institutions (Type), and across three levels of student understanding (Thinking). Using previous work, we were able to predict that we would observe the most difference based on Thinking, then Timing and did not expect differences based on Type allowing us to test the utility of these methods for categorical examination of the corpus. We found that the ecological diversity metrics that compare CRs to each other (Whittaker’s beta, species turnover, and Bray–Curtis Dissimilarity) were informative and correlated well with our predicted differences among categories and other text analysis methods. Other ecological measures, including Shannon’s and Simpson’s diversity, measure the diversity of language within a single CR. Additionally, ordination provided meaningful visual representations of the corpus by reducing complex word frequency matrices to two-dimensional graphs. Using the ordination graphs, we were able to observe patterns in the CR corpus that further supported our predictions for the data set. This work establishes novel approaches to measuring language diversity within short texts that can be used to examine differences in student language and possible associations with categorical data.more » « less
-
null (Ed.)Abstract We systematically compared two coding approaches to generate training datasets for machine learning (ML): (i) a holistic approach based on learning progression levels and (ii) a dichotomous, analytic approach of multiple concepts in student reasoning, deconstructed from holistic rubrics. We evaluated four constructed response assessment items for undergraduate physiology, each targeting five levels of a developing flux learning progression in an ion context. Human-coded datasets were used to train two ML models: (i) an 8-classification algorithm ensemble implemented in the Constructed Response Classifier (CRC), and (ii) a single classification algorithm implemented in LightSide Researcher’s Workbench. Human coding agreement on approximately 700 student responses per item was high for both approaches with Cohen’s kappas ranging from 0.75 to 0.87 on holistic scoring and from 0.78 to 0.89 on analytic composite scoring. ML model performance varied across items and rubric type. For two items, training sets from both coding approaches produced similarly accurate ML models, with differences in Cohen’s kappa between machine and human scores of 0.002 and 0.041. For the other items, ML models trained with analytic coded responses and used for a composite score, achieved better performance as compared to using holistic scores for training, with increases in Cohen’s kappa of 0.043 and 0.117. These items used a more complex scenario involving movement of two ions. It may be that analytic coding is beneficial to unpacking this additional complexity.more » « less
-
Tanner (Ed.)Recent calls in biology education research (BER) have recommended that researchers leverage learning theories and methodologies from other disciplines to investigate the mechanisms by which students to develop sophisticated ideas. We suggest design-based research from the learning sciences is a compelling methodology for achieving this aim. Design-based research investigates the “learning ecologies” that move student thinking toward mastery. These “learning ecologies” are grounded in theories of learning, produce measurable changes in student learning, generate design principles that guide the development of instructional tools, and are enacted using extended, iterative teaching experiments. In this essay, we introduce readers to the key elements of design-based research, using our own research into student learning in undergraduate physiology as an example of design-based research in BER. Then, we discuss how design-based research can extend work already done in BER and foster interdisciplinary collaborations among cognitive and learning scientists, biology education researchers, and instructors. We also explore some of the challenges associated with this methodological approach.more » « less
-
Constructed responses can be used to assess the complexity of student thinking and can be evaluated using rubrics. The two most typical rubric types used are holistic and analytic. Holistic rubrics may be difficult to use with expert-level reasoning that has additive or overlapping language. In an attempt to unpack complexity in holistic rubrics at a large scale, we have developed a systematic approach called deconstruction. We define deconstruction as the process of converting a holistic rubric into defining individual conceptual components that can be used for analytic rubric development and application. These individual components can then be recombined into the holistic score which keeps true to the holistic rubric purpose, while maximizing the benefits and minimizing the shortcomings of each rubric type. This paper outlines the deconstruction process and presents a case study that shows defined concept definitions for a hierarchical holistic rubric developed for an undergraduate physiology-content reasoning context. These methods can be used as one way for assessment developers to unpack complex student reasoning, which may ultimately improve reliability and validation of assessments that are targeted at uncovering large-scale complex scientific reasoning.more » « less
An official website of the United States government

Full Text Available