skip to main content

Title: Lipid membrane interactions of self-assembling antimicrobial nanofibers: effect of PEGylation
Supramolecular assembly and PEGylation (attachment of a polyethylene glycol polymer chain) of peptides can be an effective strategy to develop antimicrobial peptides with increased stability, antimicrobial efficacy and hemocompatibility. However, how the self-assembly properties and PEGylation affect their lipid membrane interaction is still an unanswered question. In this work, we use state-of-the-art small angle X-ray and neutron scattering (SAXS/SANS) together with neutron reflectometry (NR) to study the membrane interaction of a series of multidomain peptides, with and without PEGylation, known to self-assemble into nanofibers. Our approach allows us to study both how the structure of the peptide and the membrane are affected by the peptide–lipid interactions. When comparing self-assembled peptides with monomeric peptides that are not able to undergo assembly due to shorter chain length, we found that the nanofibers interact more strongly with the membrane. They were found to insert into the core of the membrane as well as to absorb as intact fibres on the surface. Based on the presented results, PEGylation of the multidomain peptides leads to a slight net decrease in the membrane interaction, while the distribution of the peptide at the interface is similar to the non-PEGylated peptides. Based on the structural information, we showed more » that nanofibers were partially disrupted upon interaction with phospholipid membranes. This is in contrast with the considerable physical stability of the peptide in solution, which is desirable for an extended in vivo circulation time. « less
; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
RSC Advances
Page Range or eLocation-ID:
35329 to 35340
Sponsoring Org:
National Science Foundation
More Like this
  1. The discovery of cell penetrating peptides (CPPs) with unique membrane activity has inspired the design and synthesis of a variety of cell penetrating macromolecules, which offer tremendous opportunity and promise for intracellular delivery of a variety of imaging probes and therapeutics. While cell penetrating macromolecules can be designed and synthesized to have equivalent or even superior cell penetrating activity compared with natural CPPs, most of them suffer from moderate to severe cytotoxicity. Inspired by recent advances in peptide self-assembly and cell penetrating macromolecules, in this work, we demonstrated a new class of peptide assemblies with intrinsic cell penetrating activity and excellent cytocompatibility. Supramolecular assemblies were formed through the self-assembly of de novo designed multidomain peptides (MDPs) with a general sequence of K x (QW) 6 E y in which the numbers of lysine and glutamic acid can be varied to control supramolecular assembly, morphology and cell penetrating activity. Both supramolecular spherical particles and nanofibers exhibit much higher cell penetrating activity than monomeric MDPs while supramolecular nanofibers were found to further enhance the cell penetrating activity of MDPs. In vitro cell uptake results suggested that the supramolecular cell penetrating nanofibers undergo macropinocytosis-mediated internalization and they are capable of escaping from themore »lysosome to reach the cytoplasm, which highlights their great potential as highly effective intracellular therapeutic delivery vehicles and imaging probes.« less
  2. Abstract

    Synthetic lipid membranes are self-assembled biomolecular double layers designed to approximate the properties of living cell membranes. These membranes are employed as model systems for studying the interactions of cellular envelopes with the surrounding environment in a controlled platform. They are constructed by dispersing amphiphilic lipids into a combination of immiscible fluids enabling the biomolecules to self-assemble into ordered sheets, or monolayers at the oil-water interface. The adhesion of two opposing monolayer sheets forms the membrane, or the double layer. The mechanical properties of these synthetic membranes often differ from biological ones mainly due to the presence of residual solvent in between the leaflets. In fact, the double layer compresses in response to externally applied electrical field with an intensity that varies depending on the solvent present. While typically viewed as a drawback associated with their assembly, in this work the elasticity of the double layer is utilized to further quantify complex biophysical phenomena. The adsorption of charged molecules on the surface of a lipid bilayer is a key property to decipher biomolecule interactions at the interface of the cell membrane, as well as to develop effective antimicrobial peptides and similar membrane-active molecules. This adsorption generates a difference inmore »the boundary potentials on either side of the membrane which may be tracked through electrophysiology. The soft synthetic membranes produced in the laboratory compress when exposed to an electric field. Tracking the minimum membrane capacitance allows for quantifying when the intrinsic electric field produced by the asymmetry is properly compensated by the supplied transmembrane voltage. The technique adopted in this work is the intramembrane field compensation (IFC). This technique focuses on the current generated by the bilayer in response to a sinusoidal voltage with a DC component, VDC. Briefly, the output sinusoidal current is divided into its harmonics and the second harmonic equals zero when VDC compensates the internal electric field. In this work, we apply the IFC technique to droplet interface bilayers (DIB) enabling the development of a biological sensor. A certain membrane elasticity is needed for accurate measurements and is tuned through the solvent selection. The asymmetric DIBs are formed, and an automated PID-controlled IFC design is implemented to rapidly track and compensate the membrane asymmetry. The closed loop system continuously reads the current and generates the corresponding voltage until the second harmonic is abated. This research describes the development and optimization of a biological sensor and examines how varying the structure of the synthetic membrane influences its capabilities for detecting membrane-environment interactions. This platform may be applied towards studying the interactions of membrane-active molecules and developing models for the associated phenomena to enhance their design.

    « less
  3. Self-assembling peptides have garnered an increasing amount of interest as a functional biomaterial for medical and biotechnological applications. Recently, β-sheet peptide designs utilizing complementary pairs of peptides composed of charged amino acids positioned to impart co-assembly behavior have expanded the portfolio of peptide aggregate structures. Structural characterization of these charge-complementary peptide co-assemblies has been limited. Thus, it is not known how the complementary peptides organize on the molecular level. Through a combination of solid-state NMR measurements and discontinuous molecular dynamics simulations, we investigate the molecular organization of King–Webb peptide nanofibers. KW+ and KW− peptides co-assemble into near stoichiometric two-component β-sheet structures as observed by computational simulations and 13 C– 13 C dipolar couplings. A majority of β-strands are aligned with antiparallel nearest neighbors within the β-sheet as previously suggested by Fourier transform infrared spectroscopy measurements. Surprisingly, however, a significant proportion of β-strand neighbors are parallel. While charge-complementary peptides were previously assumed to organize in an ideal (AB) n pattern, dipolar recoupling measurements on isotopically diluted nanofiber samples reveal a non-negligible amount of self-associated (AA and BB) pairs. Furthermore, computational simulations predict these different structures can coexist within the same nanofiber. Our results highlight structural disorder at the molecular level inmore »a charge-complementary peptide system with implications on co-assembling peptide designs.« less
  4. Abstract

    Human β-defensins (hBD) play central roles in antimicrobial activities against various microorganisms and in immune-regulation. These peptides perturb phospholipid membranes for function, but it is not well understood how defensins approach, insert and finally disrupt membranes on the molecular level. Here we show that hBD-3 analogs interact with lipid bilayers through a conserved surface that is formed by two adjacent loops in the solution structure. By integrating a collection of13C,1H and31P solid-state NMR methods with long-term molecular dynamic simulations, we reveal that membrane-binding rigidifies the peptide, enhances structural polymorphism, and promotes β-strand conformation. The peptide colocalizes with negatively charged lipids, confines the headgroup motion, and deforms membrane into smaller, ellipsoidal vesicles. This study designates the residue-specific, membrane-bound topology of hBD-3 analogs, serves as the basis for further elucidating the function-relevant structure and dynamics of other defensins, and facilitates the development of defensin-mimetic antibiotics, antifungals, and anti-inflammatories.

  5. Antimicrobial pentatopic 2,2′:6′,2′′-terpyridines that form 3-D supramolecular hexagonal prisms with Cd 2+ through coordination driven self-assembly can be entrapped by lipid discoidal bicelles, composed of 1,2-dipalmitoyl- sn-glycero -3-phosphocholine, 1,2-dihexanoyl- sn-glycero -3-phosphocholine and 1,2-dipalmitoyl- sn-glycero -3-phospho-(1′-rac-glycerol) lipid, forming a well-defined nanocomplex. Structural characterization performed by very small angle neutron scattering, small angle X-ray scattering and transmission electron microscopy suggests that the hexagonal prisms are preferably located at the rim of bicellar discs with the hexagonal face in parallel with the bilayers, instead of face-to-face stacking. Such a configuration reduces the π−π interaction and consequently enhances the fluorescence emission. Since novel supramolecules were reported to have antibiotic functions, this study provides insight into the interactions of antimicrobial supermolecules with lipid membranes, leading to potential theranostic applications.