skip to main content


Search for: All records

Award ID contains: 1824614

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Self‐assembled peptides are an emerging family of biomaterials that show great promise for a range of biomedical and biotechnological applications. Introducing and tuning the pH‐responsiveness of the assembly is highly desirable for improving their biological activities. Inspired by proteins with internal ionizable residues, we report a simple but effective approach to constructing pH‐responsive peptide assembly containing unnatural ionic amino acids with an aliphatic tertiary amine side chain. Through a combined experimental and computational investigation, we demonstrate that these residues can be accommodated and stabilized within the internal hydrophobic compartment of the peptide assembly. The hydrophobic microenvironment shifts their pKasignificantly from a basic pH typically found for free amines to a more biologically relevant pH in the weakly acidic range. The pH‐induced ionization and ionization‐dependent self‐assembly and disassembly are thoroughly investigated and correlated with the biological activity of the assembly. This new approach has unique advantages in tuning the pH‐responsiveness of self‐assembled peptides across a large pH range in a complex biological environment. We anticipate the ionizable amino acids developed here can be widely applicable to the synthesis and self‐assembly of many amphiphilic peptides with endowed pH‐responsive properties to enhance their biological activities toward applications ranging from targeted therapeutic delivery to proton transport.

     
    more » « less
  2. Abstract

    The rational design of materials with cell‐selective membrane activity is an effective strategy for the development of targeted molecular imaging and therapy. Here we report a new class of cationic multidomain peptides (MDPs) that can undergo enzyme‐mediated molecular transformation followed by supramolecular assembly to form nanofibers in which cationic clusters are presented on a rigid β‐sheet backbone. This structural transformation, which is induced by cells overexpressing the specific enzymes, led to a shift in the membrane perturbation potential of the MDPs, and consequently enhanced cell uptake and drug delivery efficacy. We envision the directed self‐assembly based on modularly designed MDPs as a highly promising approach to generate dynamic supramolecular nanomaterials with emerging membrane activity for a range of disease targeted molecular imaging and therapy applications.

     
    more » « less
  3. Abstract

    Many new technologies, such as cancer microenvironment‐induced nanoparticle targeting and multivalent ligand approach for cell surface receptors, are developed for active targeting in cancer therapy. While the principle of each technology is well illustrated, most systems suffer from low targeting specificity and sensitivity. To fill the gap, this work demonstrates a successful attempt to combine both technologies to simultaneously improve cancer cell targeting sensitivity and specificity. Specifically, the main component is a targeting ligand conjugated self‐assembling monomer precursor (SAM‐P), which, at the tumor site, undergoes tumor‐triggered cleavage to release the active form of self‐assembling monomer capable of forming supramolecular nanostructures. Biophysical characterization confirms the chemical and physical transformation of SAM‐P from unimers or oligomers with low ligand valency to supramolecular assemblies with high ligand valency under a tumor‐mimicking reductive microenvironment. The in vitro fluorescence assay shows the importance of supramolecular morphology in mediating ligand–receptor interactions and targeting sensitivity. Enhanced targeting specificity and sensitivity can be achieved via tumor‐triggered supramolecular assembly and induces multivalent ligand presentation toward cell surface receptors, respectively. The results support this combined tumor microenvironment‐induced cell targeting and multivalent ligand display approach, and have great potential for use as cell‐specific molecular imaging and therapeutic agents with high sensitivity and specificity.

     
    more » « less
  4. null (Ed.)
    Supramolecular assembly and PEGylation (attachment of a polyethylene glycol polymer chain) of peptides can be an effective strategy to develop antimicrobial peptides with increased stability, antimicrobial efficacy and hemocompatibility. However, how the self-assembly properties and PEGylation affect their lipid membrane interaction is still an unanswered question. In this work, we use state-of-the-art small angle X-ray and neutron scattering (SAXS/SANS) together with neutron reflectometry (NR) to study the membrane interaction of a series of multidomain peptides, with and without PEGylation, known to self-assemble into nanofibers. Our approach allows us to study both how the structure of the peptide and the membrane are affected by the peptide–lipid interactions. When comparing self-assembled peptides with monomeric peptides that are not able to undergo assembly due to shorter chain length, we found that the nanofibers interact more strongly with the membrane. They were found to insert into the core of the membrane as well as to absorb as intact fibres on the surface. Based on the presented results, PEGylation of the multidomain peptides leads to a slight net decrease in the membrane interaction, while the distribution of the peptide at the interface is similar to the non-PEGylated peptides. Based on the structural information, we showed that nanofibers were partially disrupted upon interaction with phospholipid membranes. This is in contrast with the considerable physical stability of the peptide in solution, which is desirable for an extended in vivo circulation time. 
    more » « less
  5. null (Ed.)
    The discovery of cell penetrating peptides (CPPs) with unique membrane activity has inspired the design and synthesis of a variety of cell penetrating macromolecules, which offer tremendous opportunity and promise for intracellular delivery of a variety of imaging probes and therapeutics. While cell penetrating macromolecules can be designed and synthesized to have equivalent or even superior cell penetrating activity compared with natural CPPs, most of them suffer from moderate to severe cytotoxicity. Inspired by recent advances in peptide self-assembly and cell penetrating macromolecules, in this work, we demonstrated a new class of peptide assemblies with intrinsic cell penetrating activity and excellent cytocompatibility. Supramolecular assemblies were formed through the self-assembly of de novo designed multidomain peptides (MDPs) with a general sequence of K x (QW) 6 E y in which the numbers of lysine and glutamic acid can be varied to control supramolecular assembly, morphology and cell penetrating activity. Both supramolecular spherical particles and nanofibers exhibit much higher cell penetrating activity than monomeric MDPs while supramolecular nanofibers were found to further enhance the cell penetrating activity of MDPs. In vitro cell uptake results suggested that the supramolecular cell penetrating nanofibers undergo macropinocytosis-mediated internalization and they are capable of escaping from the lysosome to reach the cytoplasm, which highlights their great potential as highly effective intracellular therapeutic delivery vehicles and imaging probes. 
    more » « less
  6. A self-assembling peptide nanofiber was developed to sense the microenvironmental pH change associated with bacterial growth. Using a near-infrared probe, a strong correlation was observed between the local pH reduction of bacterial colonies with the degree of peptide disassembly, which led to their enhanced antimicrobial activity against anaerobic bacteria. 
    more » « less