Sex determination, the developmental process by which sexually dimorphic phenotypes are established, evolves fast. Evolutionary turnover in a sex determination pathway may occur via selection on alleles that are genetically linked to a new master sex determining locus on a newly formed proto‐sex chromosome. Species with polygenic sex determination, in which master regulatory genes are found on multiple different proto‐sex chromosomes, are informative models to study the evolution of sex determination and sex chromosomes. House flies are such a model system, with male determining loci possible on all six chromosomes and a female‐determiner on one of the chromosomes as well. The two most common male‐determining proto‐Y chromosomes form latitudinal clines on multiple continents, suggesting that temperature variation is an important selection pressure responsible for maintaining polygenic sex determination in this species. Temperature‐dependent fitness effects could be manifested through temperature‐dependent gene expression differences across proto‐Y chromosome genotypes. These gene expression differences may be the result of
- Award ID(s):
- 1845686
- PAR ID:
- 10203581
- Date Published:
- Journal Name:
- Molecular Biology and Evolution
- ISSN:
- 0737-4038
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract cis regulatory variants that affect the expression of genes on the proto‐sex chromosomes, ortrans effects of the proto‐Y chromosomes on genes elswhere in the genome. We used RNA‐seq to identify genes whose expression depends on proto‐Y chromosome genotype and temperature in adult male house flies. We found no evidence for ecologically meaningful temperature‐dependent expression differences of sex determining genes between male genotypes, but we were probably not sampling an appropriate developmental time‐point to identify such effects. In contrast, we identified many other genes whose expression depends on the interaction between proto‐Y chromosome genotype and temperature, including genes that encode proteins involved in reproduction, metabolism, lifespan, stress response, and immunity. Notably, genes with genotype‐by‐temperature interactions on expression were not enriched on the proto‐sex chromosomes. Moreover, there was no evidence that temperature‐dependent expression is driven by chromosome‐widecis ‐regulatory divergence between the proto‐Y and proto‐X alleles. Therefore, if temperature‐dependent gene expression is responsible for differences in phenotypes and fitness of proto‐Y genotypes across house fly populations, these effects are driven by a small number of temperature‐dependent alleles on the proto‐Y chromosomes that may havetrans effects on the expression of genes on other chromosomes. -
Premise One evolutionary path from hermaphroditism to dioecy is via a gynodioecious intermediate. The evolution of dioecy may also coincide with the formation of sex chromosomes that possess sex‐determining loci that are physically linked in a region of suppressed recombination. Dioecious papaya (
Carica papaya ) has an XY chromosome system, where the presence of a Y chromosome determines maleness. However, in cultivation, papaya is gynodioecious, due to the conversion of the male Y chromosome to a hermaphroditic Yhchromosome during its domestication.Methods We investigated gene expression linked to the X, Y, and Yhchromosomes at different floral developmental stages to identify differentially expressed genes that may be involved in the sexual transition of males to hermaphrodites.
Results We identified 309 sex‐biased genes found on the sex chromosomes, most of which are found in the pseudoautosomal regions. Female (XX) expression in the sex‐determining region was almost double that of X‐linked expression in males (XY) and hermaphrodites (XYh), which rules out dosage compensation for most sex‐linked genes; although, an analysis of hemizygous X‐linked loci found evidence of partial dosage compensation. Furthermore, we identified a candidate gene associated with sex determination and the transition to hermaphroditism, a homolog of the MADS‐box protein
SHORT VEGETATIVE PHASE .Conclusions We identified a pattern of partial dosage compensation for hemizygous genes located in the papaya sex‐determining region. Furthermore, we propose that loss‐of‐expression of the Y‐linked
SHORT VEGETATIVE PHASE homolog facilitated the transition from males to hermaphrodites in papaya. -
A major sex difference in Alzheimer’s disease (AD) is that men with the disease die earlier than do women. In aging and preclinical AD, men also show more cognitive deficits. Here, we show that the X chromosome affects AD-related vulnerability in mice expressing the human amyloid precursor protein (hAPP), a model of AD. XY-hAPP mice genetically modified to develop testicles or ovaries showed worse mortality and deficits than did XX-hAPP mice with either gonad, indicating a sex chromosome effect. To dissect whether the absence of a second X chromosome or the presence of a Y chromosome conferred a disadvantage on male mice, we varied sex chromosome dosage. With or without a Y chromosome, hAPP mice with one X chromosome showed worse mortality and deficits than did those with two X chromosomes. Thus, adding a second X chromosome conferred resilience to XY males and XO females. In addition, the Y chromosome, its sex-determining region Y gene (
Sry ), or testicular development modified mortality in hAPP mice with one X chromosome such that XY males with testicles survived longer than did XY or XO females with ovaries. Furthermore, a second X chromosome conferred resilience potentially through the candidate geneKdm6a , which does not undergo X-linked inactivation. In humans, genetic variation inKDM6A was linked to higher brain expression and associated with less cognitive decline in aging and preclinical AD, suggesting its relevance to human brain health. Our study suggests a potential role for sex chromosomes in modulating disease vulnerability related to AD. -
The mammalian sex chromosome system (XX female/XY male) is ancient and highly conserved. The sex chromosome karyotype of the creeping vole (
Microtus oregoni ) represents a long-standing anomaly, with an X chromosome that is unpaired in females (X0) and exclusively maternally transmitted. We produced a highly contiguous male genome assembly, together with short-read genomes and transcriptomes for both sexes. We show thatM. oregoni has lost an independently segregating Y chromosome and that the male-specific sex chromosome is a second X chromosome that is largely homologous to the maternally transmitted X. Both maternally inherited and male-specific sex chromosomes carry fragments of the ancestral Y chromosome. Consequences of this recently transformed sex chromosome system include Y-like degeneration and gene amplification on the male-specific X, expression of ancestral Y-linked genes in females, and X inactivation of the male-specific chromosome in male somatic cells. The genome ofM. oregoni elucidates the processes that shape the gene content and dosage of mammalian sex chromosomes and exemplifies a rare case of plasticity in an ancient sex chromosome system. -
Abstract Incompatibilities on the sex chromosomes are important in the evolution of hybrid male sterility, but the evolutionary forces underlying this phenomenon are unclear. House mice (Mus musculus) lineages have provided powerful models for understanding the genetic basis of hybrid male sterility. X chromosome–autosome interactions cause strong incompatibilities in M. musculus F1 hybrids, but variation in sterility phenotypes suggests a more complex genetic basis. In addition, XY chromosome conflict has resulted in rapid expansions of ampliconic genes with dosage-dependent expression that is essential to spermatogenesis. Here, we evaluated the contribution of XY lineage mismatch to male fertility and stage-specific gene expression in hybrid mice. We performed backcrosses between two house mouse subspecies to generate reciprocal Y-introgression strains and used these strains to test the effects of XY mismatch in hybrids. Our transcriptome analyses of sorted spermatid cells revealed widespread overexpression of the X chromosome in sterile F1 hybrids independent of Y chromosome subspecies origin. Thus, postmeiotic overexpression of the X chromosome in sterile F1 mouse hybrids is likely a downstream consequence of disrupted meiotic X-inactivation rather than XY gene copy number imbalance. Y chromosome introgression did result in subfertility phenotypes and disrupted expression of several autosomal genes in mice with an otherwise nonhybrid genomic background, suggesting that Y-linked incompatibilities contribute to reproductive barriers, but likely not as a direct consequence of XY conflict. Collectively, these findings suggest that rapid sex chromosome gene family evolution driven by genomic conflict has not resulted in strong male reproductive barriers between these subspecies of house mice.