skip to main content


Title: Identification of sex chromosome and sex-determining gene of southern catfish ( Silurus meridionalis ) based on XX, XY and YY genome sequencing
Teleosts are important models to study sex chromosomes and sex-determining (SD) genes because they present a variety of sex determination systems. Here, we used Nanopore and Hi-C technologies to generate a high-contiguity chromosome-level genome assembly of a YY southern catfish ( Silurus meridionalis ). The assembly is 750.0 Mb long, with contig N50 of 15.96 Mb and scaffold N50 of 27.22 Mb. We also sequenced and assembled an XY male genome with a size of 727.2 Mb and contig N50 of 13.69 Mb. We identified a candidate SD gene through comparisons to our previous assembly of an XX individual. By resequencing male and female pools, we characterized a 2.38 Mb sex-determining region (SDR) on Chr24. Analysis of read coverage and comparison of the X and Y chromosome sequences showed a Y specific insertion (approx. 500 kb) in the SDR which contained a male-specific duplicate of amhr2 (named amhr2y ). amhr2y and amhr2 shared high-nucleotide identity (81.0%) in the coding region but extremely low identity in the promotor and intron regions. The exclusive expression in the male gonadal primordium and loss-of-function inducing male to female sex reversal confirmed the role of amhr2y in male sex determination. Our study provides a new example of amhr2 as the SD gene in fish and sheds light on the convergent evolution of the duplication of AMH/AMHR2 pathway members underlying the evolution of sex determination in different fish lineages.  more » « less
Award ID(s):
1830753
NSF-PAR ID:
10382951
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
289
Issue:
1971
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Fish have evolved a variety of sex‐determining (SD) systems including male heterogamy (XY), female heterogamy (ZW) and environmental SD. Little is known about SD mechanisms ofSebastesrockfishes, a highly speciose genus of importance to evolutionary and conservation biology. Here, we characterize the sex determination system in the sympatrically distributed sister speciesSebastes chrysomelasandSebastes carnatus. To identify sex‐specific genotypic markers, double digest restriction site – associated DNA sequencing (ddRAD‐seq) of genomic DNA from 40 sexed individuals of both species was performed. Loci were filtered for presence in all of the individuals of one sex, absence in the other sex and no heterozygosity. Of the 74 965 loci present in all males, 33 male‐specific loci met the criteria in at least one species and 17 in both. Conversely, no female‐specific loci were detected, together providing evidence of an XY sex determination system in both species. When aligned to a draft reference genome fromSebastes aleutianus, 26 sex‐specific loci were interspersed among 1168 loci that were identical between sexes. The nascent Y chromosome averaged 5% divergence from the X chromosome and mapped to referenceSebastesgenome scaffolds totalling 6.9Mbp in length. These scaffolds aligned to a single chromosome in three model fish genomes. Read coverage differences were also detected between sex‐specific and autosomal loci. A PCR‐RFLP assay validated the bioinformatic results and correctly identified sex of five additional individuals of known sex. A sex‐determining gene in other teleostsgonadal soma‐derived factor(gsdf) was present in the model fish chromosomes that spanned our sex‐specific markers.

     
    more » « less
  2. The Mozambique tilapia ( Oreochromis mossambicus ) is a fascinating taxon for evolutionary and ecological research. It is an important food fish and one of the most widely distributed tilapias. Because males grow faster than females, genetically male tilapia are preferred in aquaculture. However, studies of sex determination and sex control in O . mossambicus have been hindered by the limited characterization of the genome. To address this gap, we assembled a high-quality genome of O . mossambicus , using a combination of high coverage of Illumina and Nanopore reads, coupled with Hi-C and RNA-Seq data. Our genome assembly spans 1,007 Mb with a scaffold N50 of 11.38 Mb. We successfully anchored and oriented 98.6% of the genome on 22 linkage groups (LGs). Based on re-sequencing data for male and female fishes from three families, O . mossambicus segregates both an XY system on LG14 and a ZW system on LG3. The sex-patterned SNPs shared by two XY families narrowed the sex determining regions to ∼3 Mb on LG14. The shared sex-patterned SNPs included two deleterious missense mutations in ahnak and rhbdd1 , indicating the possible roles of these two genes in sex determination. This annotated chromosome-level genome assembly and identification of sex determining regions represents a valuable resource to help understand the evolution of genetic sex determination in tilapias. 
    more » « less
  3. Abstract

    It remains a major challenge to identify the genes and mutations that lead to plant sexual differentiation. Here, we study the structure and evolution of the sex-determining region (SDR) inVitisspecies. We report an improved, chromosome-scale Cabernet Sauvignon genome sequence and the phased assembly of nine wild and cultivated grape genomes. By resolving twentyVitisSDR haplotypes, we compare male, female, and hermaphrodite haplotype structures and identify sex-linked regions. Coupled with gene expression data, we identify a candidate male-sterility mutation in theVviINP1gene and potential female-sterility function associated with the transcription factorVviYABBY3. Our data suggest that dioecy has been lost during domestication through a rare recombination event between male and female haplotypes. This work significantly advances the understanding of the genetic basis of sex determination inVitisand provides the information necessary to rapidly identify sex types in grape breeding programs.

     
    more » « less
  4. Abstract

    The evolutionary direction of gonochorism and hermaphroditism is an intriguing mystery to be solved. The special transient hermaphroditic stage makes the little yellow croaker (Larimichthys polyactis) an appealing model for studying hermaphrodite formation. However, the origin and evolutionary relationship between ofL. polyactisandLarimichthys crocea, the most famous commercial fish species in East Asia, remain unclear. Here, we report the sequence of theL. polyactisgenome, which we found is ~706 Mb long (contig N50 = 1.21 Mb and scaffold N50 = 4.52 Mb) and contains 25,233 protein‐coding genes. Phylogenomic analysis suggested thatL. polyactisdiverged from the common ancestor,L. crocea, approximately 25.4 million years ago. Our high‐quality genome assembly enabled comparative genomic analysis, which revealed several within‐chromosome rearrangements and translocations, without major chromosome fission or fusion events between the two species. Thedmrt1gene was identified as the male‐specific gene inL. polyactis. Transcriptome analysis showed that the expression ofdmrt1and its upstream regulatory gene (rnf183) were both sexually dimorphic.Rnf183, unlike its two paraloguesrnf223andrnf225, is only present inLarimichthysandLatesbut not in other teleost species, suggesting that it originated from lineage‐specific duplication or was lost in other teleosts.Phylogenetic analysis shows that the hermaphrodite stage in maleL. polyactismay be explained by the sequence evolution ofdmrt1. Decoding theL. polyactisgenome not only provides insight into the genetic underpinnings of hermaphrodite evolution, but also provides valuable information for enhancing fish aquaculture.

     
    more » « less
  5. Triggers and biological processes controlling male or female gonadal differentiation vary in vertebrates, with sex determination (SD) governed by environmental factors or simple to complex genetic mechanisms that evolved repeatedly and independently in various groups. Here, we review sex evolution across major clades of vertebrates with information on SD, sexual development and reproductive modes. We offer an up-to-date review of divergence times, species diversity, genomic resources, genome size, occurrence and nature of polyploids, SD systems, sex chromosomes, SD genes, dosage compensation and sex-biased gene expression. Advances in sequencing technologies now enable us to study the evolution of SD at broader evolutionary scales, and we now hope to pursue a sexomics integrative research initiative across vertebrates. The vertebrate sexome comprises interdisciplinary and integrated information on sexual differentiation, development and reproduction at all biological levels, from genomes, transcriptomes and proteomes, to the organs involved in sexual and sex-specific processes, including gonads, secondary sex organs and those with transcriptional sex-bias. The sexome also includes ontogenetic and behavioural aspects of sexual differentiation, including malfunction and impairment of SD, sexual differentiation and fertility. Starting from data generated by high-throughput approaches, we encourage others to contribute expertise to building understanding of the sexomes of many key vertebrate species. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)’. 
    more » « less