skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Theoretical Perspectives of the Baltimore Ecosystem Study: Conceptual Evolution in a Social–Ecological Research Project
Abstract The Earth's population will become more than 80% urban during this century. This threshold is often regarded as sufficient justification for pursuing urban ecology. However, pursuit has primarily focused on building empirical richness, and urban ecology theory is rarely discussed. The Baltimore Ecosystem Study (BES) has been grounded in theory since its inception and its two decades of data collection have stimulated progress toward comprehensive urban theory. Emerging urban ecology theory integrates biology, physical sciences, social sciences, and urban design, probes interdisciplinary frontiers while being founded on textbook disciplinary theories, and accommodates surprising empirical results. Theoretical growth in urban ecology has relied on refined frameworks, increased disciplinary scope, and longevity of interdisciplinary interactions. We describe the theories used by BES initially, and trace ongoing theoretical development that increasingly reflects the hybrid biological–physical–social nature of the Baltimore ecosystem. The specific mix of theories used in Baltimore likely will require modification when applied to other urban areas, but the developmental process, and the key results, will continue to benefit other urban social–ecological research projects.  more » « less
Award ID(s):
1855277 1637661
NSF-PAR ID:
10203676
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
BioScience
Volume:
70
Issue:
4
ISSN:
0006-3568
Page Range / eLocation ID:
297 to 314
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Baltimore Ecosystem Study (BES) has established a network of long-term permanent biogeochemical study plots. These plots will provide long-term data on vegetation, soil and hydrologic processes in the key ecosystem types within the urban ecosystem. The current network of study plots includes eight forest plots, chosen to represent the range of forest conditions in the area, and four grass plots. These plots are complemented by a network of 200 less intensive study plots located across the Baltimore metropolitan area. Plots are currently instrumented with lysimeters (drainage and tension) to sample soil solution chemistry, time domain reflectometry probes to measure soil moisture, dataloggers to measure and record soil temperature and trace gas flux chambers to measure the flux of carbon dioxide, nitrous oxide and methane from soil to the atmosphere. Measurements of in situ nitrogen mineralization, nitrification and denitrification were made at approximately monthly intervals from Fall 1998 - Fall 2000. Detailed vegetation characterization (all layers) was done in summer 1998. Data from these plots has been published in Groffman et al. (2006, 2009) and Groffman and Pouyat (2009). In November of 1998 four rural, forested plots were established at Oregon Ridge Park in Baltimore County northeast of the Gwynns Falls Watershed. Oregon Ridge Park contains Pond Branch, the forested reference watershed for BES. Two of these four plots are located on the top of a slope; the other two are located midway up the slope. In June of 2010 measurements at the mid-slope sites on Pond Branch were discontinued. Monuments and equipment remain at the two plots. These plots were replaced with two lowland riparian plots; Oregon upper riparian and Oregon lower riparian. Each riparian sites has four 5 cm by 1-2.5 meter depth slotted wells laid perpendicular to the stream, four tension lysimeters at 10 cm depth, five time domain reflectometry probes, and four trace gas flux chambers in the two dominant microtopographic features of the riparian zones - high spots (hummocks) and low spots (hollows). Four urban, forested plots were established in November 1998, two at Leakin Park and two adjacent to Hillsdale Park in west Baltimore City in the Gwynns Falls. One of the plots in Hillsdale Park was abandoned in 2004 due to continued vandalism. In May 1999 two grass, lawn plots were established at McDonogh School in Baltimore County west of the city in the Gwynns Falls. One of these plots is an extremely low intensity management area (mowed once or twice a year) and one is in a low intensity management area (frequent mowing, no fertilizer or herbicide use). In 2009, the McDonogh plots were abandoned due to management changes at the school. Two grass lawn plots were established on the campus of the University of Maryland, Baltimore County (UMBC) in fall 2000. One of these plots is in a medium intensity management area (frequent mowing, moderate applications of fertilizer and herbicides) and one is in a high intensity management area (frequent mowing, high applications of fertilizer and herbicides). Literature Cited Bowden R, Steudler P, Melillo J and Aber J. 1990. Annual nitrous oxide fluxes from temperate forest soils in the northeastern United States. J. Geophys. Res.-Atmos. 95, 13997 14005. Driscoll CT, Fuller RD and Simone DM (1988) Longitudinal variations in trace metal concentrations in a northern forested ecosystem. J. Environ. Qual. 17: 101-107 Goldman, M. B., P. M. Groffman, R. V. Pouyat, M. J. McDonnell, and S. T. A. Pickett. 1995. CH4 uptake and N availability in forest soils along an urban to rural gradient. Soil Biology and Biochemistry 27:281-286. Groffman PM, Holland E, Myrold DD, Robertson GP and Zou X (1999) Denitrification. In: Robertson GP, Bledsoe CS, Coleman DC and Sollins P (Eds) Standard Soil Methods for Long Term Ecological Research. (pp 272-290). Oxford University Press, New York Groffman PM, Pouyat RV, Cadenasso ML, Zipperer WC, Szlavecz K, Yesilonis IC,. Band LE and Brush GS. 2006. Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. Forest Ecology and Management 236:177-192. Groffman, P.M., C.O. Williams, R.V. Pouyat, L.E. Band and I.C. Yesilonis. 2009. Nitrate leaching and nitrous oxide flux in urban forests and grasslands. Journal of Environmental Quality 38:1848-1860. Groffman, P.M. and R.V. Pouyat. 2009. Methane uptake in urban forests and lawns. Environmental Science and Technology 43:5229-5235. DOI: 10.1021/es803720h. Holland EA, Boone R, Greenberg J, Groffman PM and Robertson GP (1999) Measurement of Soil CO2, N2O and CH4 exchange. In: Robertson GP, Bledsoe CS, Coleman DC and Sollins P (Eds) Standard Soil Methods for Long Term Ecological Research. (pp 258-271). Oxford University Press, New York Robertson GP, Wedin D, Groffman PM, Blair JM, Holland EA, Nadelhoffer KJ and. Harris D. 1999. Soil carbon and nitrogen availability: Nitrogen mineralization, nitrification and carbon turnover. In: Standard Soil Methods for Long Term Ecological Research (Robertson GP, Bledsoe CS, Coleman DC and Sollins P (Eds) Standard Soil Methods for Long Term Ecological Research. (pp 258-271). Oxford University Press, New York Savva, Y., K. Szlavecz, R. V. Pouyat, P. M. Groffman, and G. Heisler. 2010. Effects of land use and vegetation cover on soil temperature in an urban ecosystem. Soil Science Society of America Journal 74:469-480." 
    more » « less
  2. The Baltimore Ecosystem Study (BES) has established a network of long-term permanent biogeochemical study plots. These plots will provide long-term data on vegetation, soil and hydrologic processes in the key ecosystem types within the urban ecosystem. The current network of study plots includes eight forest plots, chosen to represent the range of forest conditions in the area, and four grass plots. These plots are complemented by a network of 200 less intensive study plots located across the Baltimore metropolitan area. Plots are currently instrumented with lysimeters (drainage and tension) to sample soil solution chemistry, time domain reflectometry probes to measure soil moisture, dataloggers to measure and record soil temperature and trace gas flux chambers to measure the flux of carbon dioxide, nitrous oxide and methane from soil to the atmosphere. Measurements of in situ nitrogen mineralization, nitrification and denitrification were made at approximately monthly intervals from Fall 1998 - Fall 2000. Detailed vegetation characterization (all layers) was done in summer 1998. This data record contains near-monthly water content measurements, and the record continues with hourly data found in: Baltimore Ecosystem Study: Soil moisture and temperature along an urban to rural gradient, 2011- present https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-bes&identifier=3400 Data from these plots has been published in the following papers: Groffman PM, Pouyat RV, Cadenasso ML, Zipperer WC, Szlavecz K, Yesilonis IC,. Band LE and Brush GS. 2006. Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. Forest Ecology and Management 236:177-192. Groffman, P.M., C.O. Williams, R.V. Pouyat, L.E. Band and I.C. Yesilonis. 2009. Nitrate leaching and nitrous oxide flux in urban forests and grasslands. Journal of Environmental Quality 38:1848-1860. Groffman, P.M. and R.V. Pouyat. 2009. Methane uptake in urban forests and lawns. Environmental Science and Technology 43:5229-5235. DOI: 10.1021/es803720h. 
    more » « less
  3. An ongoing component of the Baltimore urban long-term ecological research (LTER) project (Baltimore Ecosystem Study, BES) is the use of the watershed approach and monitoring of stream water quality to evaluate the integrated ecosystem functioning of Baltimore. The LTER research has focused on the Gwynns Falls watershed, which spans a gradient from highly urban, urban-residential, and suburban zones. In addition, a forested watershed serves as a reference. The long-term sampling network includes four longitudinal sampling sites along the Gwynns Falls mainstem, as well as several small (40-100 ha) watershed within or near the Gwynns Falls, providing data on water quality in different land use zones of the watersheds. Each study site is continuously monitored for discharge and is sampled weekly for water chemistry. Those data are available elsewhere on the BES website. We are interested in studying the bioreactivity of streams in our watersheds in an attempt to quantify how streams themselves may affect or be affected by water quality. To assess the bioreactivity of streams, we measure whole stream metabolism, which is an integrative metric which quantifies the production and consumption of energy by a stream ecosystem. Stream metabolism represents how energy is created (primary production) and used (respiration) within a stream; it can be thought of as a stream breathing, with primary production being similar to an inhale, and respiration as an exhale. We are monitoring stream metabolism in each of our long-term water quality monitoring stations by deploying sensors that record dissolve oxygen and temperature of the stream every five minutes, and we also have deployed light sensors to record irradiance every five minutes at long-term BES water chemistry streams, which is needed for metabolism modeling. In addition, each dissolved oxygen sensor is located near a USGS gage which estimates discharge every 15 minutes. We used USGS manual discharge estimations linked with channel geometry measurements to develop a unique discharge-stream depth relationship (contact AJ Reisinger for details). The combination of the USGS discharge data and our discharge-depth relationship allows us to estimate average daily discharge and depth. We have included these data as well as dissolved oxygen, temperature, and PAR, allowing metabolism to be scaled on an areal basis. Primary production and respiration of streams integrate all biological activity in a stream, and therefore are good metrics to assess the state of an ecosystem. These metrics can also be used to predict other ecosystem functions. This dataset includes all information needed for whole-stream metabolism modeling using the streammetabolizer R package. Data will updated as it becomes available from the core stream study sites (see http://md.water.usgs.gov/BES for a detailed description of these sites). 
    more » « less
  4. null (Ed.)
    Theoretical and Empirical Modeling of Identity and Sentiments in Collaborative Groups (THEMIS.COG) was an interdisciplinary research collaboration of computer scientists and social scientists from the University of Waterloo (Canada), Potsdam University of Applied Sciences (Germany), and Dartmouth College (USA). This white paper summarizes the results of our research at the end of the grant term. Funded by the Trans-Atlantic Platform’s Digging Into Data initiative, the project aimed at theoretical and empirical modeling of identity and sentiments in collaborative groups. Understanding the social forces behind self-organized collaboration is important because technological and social innovations are increasingly generated through informal, distributed processes of collaboration, rather than in formal organizational hierarchies or through market forces. Our work used a data-driven approach to explore the social psychological mechanisms that motivate such collaborations and determine their success or failure. We focused on the example of GitHub, the world’s current largest digital platform for open, collaborative software development. In contrast to most, purely inductive contemporary approaches leveraging computational techniques for social science, THEMIS.COG followed a deductive, theory-driven approach. We capitalized on affect control theory, a mathematically formalized theory of symbolic interaction originated by sociologist David R. Heise and further advanced in previous work by some of the THEMIS.COG collaborators, among others. Affect control theory states that people control their social behaviours by intuitively attempting to verify culturally shared feelings about identities, social roles, and behaviour settings. From this principle, implemented in computational simulation models, precise predictions about group dynamics can be derived. It was the goal of THEMIS.COG to adapt and apply this approach to study the GitHub collaboration ecosystem through a symbolic interactionist lens. The project contributed substantially to the novel endeavor of theory development in social science based on large amounts of naturally occurring digital data. 
    more » « less
  5. The Baltimore Ecosystem Study (BES) established a network of long-term permanent biogeochemical study plots in 1998. These plots provide long-term data on vegetation, soil and hydrologic processes in the key ecosystem types within the urban ecosystem. The network of study plots includes forest plots (upland and riparian), chosen to represent the range of forest conditions in the area and grass plots (to represent home lawns). Plots are instrumented with lysimeters (drainage and tension) to sample soil solution chemistry, time domain reflectometry probes to measure soil moisture, dataloggers to measure and record soil temperature, and trace gas flux chambers to measure the flux of carbon dioxide, nitrous oxide and methane from soil to the atmosphere. Measurements of in situ nitrogen mineralization, nitrification and denitrification were made at approximately monthly intervals from Fall 1998 - Fall 2000. Detailed vegetation characterization (all layers) was done in summer 1998 and 2015. Data from these plots has been published in Groffman et al. (2006, 2009), Groffman and Pouyat (2009), Savva et al. (2010), Costa and Groffman (2013), Duncan et al. (2013), Waters et al. (2014), Ni and Groffman (2018), Templeton et al. (2019). Literature Cited Costa, K.H. and P.M. Groffman. 2013. Factors regulating net methane flux in urban forests and grasslands. Soil Science Society of America Journal 77:850 - 855. Duncan, J. M., L. E. Band, and P. M. Groffman. 2013. Towards closing the watershed nitrogen budget: Spatial and temporal scaling of denitrification. Journal of Geophysical Research Biogeosciences 118:1-5; DOI: 10.1002/jgrg.20090 Groffman PM, Pouyat RV, Cadenasso ML, Zipperer WC, Szlavecz K, Yesilonis IC,. Band LE and Brush GS. 2006. Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. Forest Ecology and Management 236:177-192. Groffman, P.M., C.O. Williams, R.V. Pouyat, L.E. Band and I.C. Yesilonis. 2009. Nitrate leaching and nitrous oxide flux in urban forests and grasslands. Journal of Environmental Quality 38:1848-1860. Groffman, P.M. and R.V. Pouyat. 2009. Methane uptake in urban forests and lawns. Environmental Science and Technology 43:5229-5235. DOI: 10.1021/es803720h. Ni, X. and P.M. Groffman. 2018. Declines in methane uptake in forest soils. Proceedings of the National Academies of Science of the United States of America 115:8587-8590. Savva, Y., K. Szlavecz, R. V. Pouyat, P. M. Groffman, and G. Heisler. 2010. Effects of land use and vegetation cover on soil temperature in an urban ecosystem. Soil Science Society of America Journal 74:469-480. Templeton, L., M.L. Cadenasso, J. Sullivan, M. Neel and P.M. Groffman. 2019. Changes in vegetation structure and composition of urban and rural forest patches in Baltimore from 1998 to 2015. Forest Ecology and Management. In press. Waters, E.R., J.L. Morse, N.D. Bettez and P.M. Groffman. 2014. Differential carbon and nitrogen controls of denitrification in riparian zones and streams along an urban to exurban gradient. Journal of Environmental Quality 43:955–963. 
    more » « less