skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Theoretical Studies on the Direct Propylene Epoxidation Using Gold-Based Catalysts: A Mini-Review
Direct propylene epoxidation using Au-based catalysts is an important gas-phase reaction and is clearly a promising route for the future industrial production of propylene oxide (PO). For instance, gold nanoparticles or clusters that consist of a small number of atoms demonstrate unique and even unexpected properties, since the high ratio of surface to bulk atoms can provide new reaction pathways with lower activation barriers. Support materials can have a remarkable effect on Au nanoparticles or clusters due to charge transfer. Moreover, Au (or Au-based alloy, such as Au–Pd) can be loaded on supports to form active interfacial sites (or multiple interfaces). Model studies are needed to help probe the underlying mechanistic aspects and identify key factors controlling the activity and selectivity. The current theoretical/computational progress on this system is reviewed with respect to the molecular- and catalyst-level aspects (e.g., first-principles calculations and kinetic modeling) of propylene epoxidation over Au-based catalysts. This includes an analysis of H2 and O2 adsorption, H2O2 (OOH) species formation, epoxidation of propylene into PO, as well as possible byproduct formation. These studies have provided a better understanding of the nature of the active centers and the dominant reaction mechanisms, and thus, could potentially be used to design novel catalysts with improved efficiency.  more » « less
Award ID(s):
1511820
PAR ID:
10203695
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Catalysts
Volume:
8
Issue:
10
ISSN:
2073-4344
Page Range / eLocation ID:
421
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Propylene epoxidation in the presence of oxygen and hydrogen were measured for a series of Au/TS‐1 catalysts prepared by a modified incipient wetness impregnation (mIWI) method. This method enables precise control of the Au : Ti ratio in the Au/TS‐1 catalysts. The optimized Au/TS‐1 catalyst exhibited 12 % propylene conversion, 87 % PO selectivity, and 25 % hydrogen efficiency. The particle size of gold nanoparticles prepared by the modified IWI was between 2 and 3 nm, as demonstrated by XRD patterns, STEM images, and X‐ray absorption spectroscopy at the Au L3edge. XPS spectra showed that the surface species on the catalysts were similar. UV‐Vis spectra suggested that in the modified IWI method, the chlorine ligands in Au(Cl)4were replaced by hydroxyl groups, which contributes to form small gold nanoparticles. Kinetic studies showed that the active sites of Au(mIWI)/TS‐1 are similar to the Au(DP)/TS‐1 prepared by deposition precipitation. 
    more » « less
  2. Two-dimensional (2D) substrates decorated with metal nanoparticles offer new opportunities to achieve high-performance catalytic behavior. However, little is known on how the substrates control the nucleation and growth processes of the nanoparticles. This paper presents the visualization of dynamic nucleation and growth processes of gold nanoparticles on ultrathin MoS 2 nanoflakes by in situ liquid-cell transmission electron microscopy (TEM). The galvanic displacement resulting in Au nuclei formation on MoS 2 was observed in real time inside the liquid cell. We found that the growth mechanism of Au particles on pristine MoS 2 is in between diffusion-limited and reaction-limited, possibly due to the presence of electrochemical Ostwald ripening. A larger size distribution and more orientation variation is observed for the Au particles along the MoS 2 edge than on the interior. Differing from pristine MoS 2 , sulfur vacancies on MoS 2 induce Au particle diffusion and coalescence during the growth process. Density functional theory (DFT) calculations show that the size difference is because the exposed molybdenum atoms at the edge with dangling bonds can strongly interact with Au atoms, whereas sulfur atoms on the MoS 2 interior have no dangling bonds and weakly interact with gold atoms. In addition, S vacancies on MoS 2 generate strong nucleation centers that can promote diffusion and coalescence of Au nanoparticles. The present work provides key insights into the role of 2D materials in controlling the size and orientation of noble metal nanoparticles vital to the design of next generation catalysts. 
    more » « less
  3. null (Ed.)
    The surfaces of chemically synthesized spherical gold NPs (Au-NPs) have been modified using chiral L- or D-penicillamine (Pen) in order to impart enantioselective adsorption properties. These chiral Au-NPs have been used to demonstrate enantioselective adsorption of racemic propylene oxide (PO) from aqueous solution. In the past we have studied enantioselective adsorption of racemic PO on L- or D-cysteine (Cys)-coated Au-NPs. This prior work suggested that adsorption of PO on Cys-coated Au-NPs equilibrates within an hour. In this work, we have studied the effect of time on the enantioselective adsorption of racemic PO from solution onto chiral Pen/Au-NPs. Enantioselective adsorption of PO on chiral Pen/Au-NPs is time-dependent but reaches a steady state after ~18 h at room temperature. More importantly, L- or D-Pen/Au-NPs are shown to adsorb R- or S-PO enantiospecifically and to separate the two PO enantiomers from racemic mixtures of RS-PO. 
    more » « less
  4. null (Ed.)
    Oxygen reduction reaction (ORR) plays an important role in dictating the performance of various electrochemical energy technologies. As platinum nanoparticles have served as the catalysts of choice towards ORR, minimizing the cost of the catalysts by diminishing the platinum nanoparticle size has become a critical route to advancing the technological development. Herein, first-principle calculations show that carbon-supported Pt 9 clusters represent the threshold domain size, and the ORR activity can be significantly improved by doping of adjacent cobalt atoms. This is confirmed experimentally, where platinum and cobalt are dispersed in nitrogen-doped carbon nanowires in varied forms, single atoms, few-atom clusters, and nanoparticles, depending on the initial feeds. The sample consisting primarily of Pt 2~7 clusters doped with atomic Co species exhibits the best mass activity among the series, with a current density of 4.16   A   mg Pt − 1 at +0.85 V vs. RHE that is almost 50 times higher than that of commercial Pt/C. 
    more » « less
  5. High entropy alloy (HEA) nanoparticles hold promise as active and durable (electro)catalysts. Understanding their formation mechanism will enable rational control over composition and atomic arrangement of multimetallic catalytic surface sites to maximize their activity. While prior reports have attributed HEA nanoparticle formation to nucleation and growth, there is a dearth of detailed mechanistic investigations. Here we utilize liquid phase transmission electron microscopy (LPTEM), systematic synthesis, and mass spectrometry (MS) to demonstrate that HEA nanoparticles form by aggregation of metal cluster intermediates. AuAgCuPtPd HEA nanoparticles are synthesized by aqueous co-reduction of metal salts with sodium borohydride in the presence of thiolated polymer ligands. Varying the metal : ligand ratio during synthesis showed that alloyed HEA nanoparticles formed only above a threshold ligand concentration. Interestingly, stable single metal atoms and sub-nanometer clusters are observed by TEM and MS in the final HEA nanoparticle solution, suggesting nucleation and growth is not the dominant mechanism. Increasing supersaturation ratio increased particle size, which together with observations of stable single metal atoms and clusters, supported an aggregative growth mechanism. Direct real-time observation with LPTEM imaging showed aggregation of HEA nanoparticles during synthesis. Quantitative analyses of the nanoparticle growth kinetics and particle size distribution from LPTEM movies were consistent with a theoretical model for aggregative growth. Taken together, these results are consistent with a reaction mechanism involving rapid reduction of metal ions into sub-nanometer clusters followed by cluster aggregation driven by borohydride ion induced thiol ligand desorption. This work demonstrates the importance of cluster species as potential synthetic handles for rational control over HEA nanoparticle atomic structure. 
    more » « less