skip to main content


Title: Chiral Separation of rac-Propylene Oxide on Penicillamine Coated Gold NPs
The surfaces of chemically synthesized spherical gold NPs (Au-NPs) have been modified using chiral L- or D-penicillamine (Pen) in order to impart enantioselective adsorption properties. These chiral Au-NPs have been used to demonstrate enantioselective adsorption of racemic propylene oxide (PO) from aqueous solution. In the past we have studied enantioselective adsorption of racemic PO on L- or D-cysteine (Cys)-coated Au-NPs. This prior work suggested that adsorption of PO on Cys-coated Au-NPs equilibrates within an hour. In this work, we have studied the effect of time on the enantioselective adsorption of racemic PO from solution onto chiral Pen/Au-NPs. Enantioselective adsorption of PO on chiral Pen/Au-NPs is time-dependent but reaches a steady state after ~18 h at room temperature. More importantly, L- or D-Pen/Au-NPs are shown to adsorb R- or S-PO enantiospecifically and to separate the two PO enantiomers from racemic mixtures of RS-PO.  more » « less
Award ID(s):
1764252
NSF-PAR ID:
10224449
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Nanomaterials
Volume:
10
Issue:
9
ISSN:
2079-4991
Page Range / eLocation ID:
1716
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A fundamental understanding of the enantiospecific interactions between chiral adsorbates and understanding of their interactions with chiral surfaces is key to unlocking the origins of enantiospecific surface chemistry. Herein, the adsorption and decomposition of the amino acid proline (Pro) have been studied on the achiral Cu(110) and Cu(111) surfaces and on the chiral Cu(643)R&Ssurfaces. Isotopically labelled 1‐13C‐l‐Pro has been used to probe the Pro decomposition mechanism and to allow mass spectrometric discrimination ofd‐Pro and 1‐13C‐l‐Pro when adsorbed as mixtures. On the Cu(111) surface, X‐ray photoelectron spectroscopy reveals that Pro adsorbs as an anionic species in the monolayer. On the chiral Cu(643)R&Ssurface, adsorbed Pro enantiomers decompose with non‐enantiospecific kinetics. However, the decomposition kinetics were found to be different on the terraces versus the kinked steps. Exposure of the chiral Cu(643)R&Ssurfaces to a racemic gas phase mixture ofd‐Pro and 1‐13C‐l‐Pro resulted in the adsorption of a racemic mixture; i.e., adsorption is not enantiospecific. However, exposure to non‐racemic mixtures ofd‐Pro and 1‐13C‐l‐Pro resulted in amplification of enantiomeric excess on the surface, indicative of homochiral aggregation of adsorbed Pro. During co‐adsorption, this amplification is observed even at very low coverages, quite distinct from the behavior of other amino acids, which begin to exhibit homochiral aggregation only after reaching monolayer coverages. The equilibrium adsorption ofd‐Pro and 1‐13C‐l‐Pro mixtures on achiral Cu(110) did not display any aggregation, consistent with prior scanning tunneling microscopy (STM) observations ofdl‐Pro/Cu(110). This demonstrates convergence between findings from equilibrium adsorption methods and STM experiments and corroborates formation of a 2D random solid solution.

     
    more » « less
  2. Abstract

    The hydration kinetics of enantiomerically pure propylene oxide (PO, CH3*CHCH2O) to chiral propylene glycol (PG, CH3*CH(OH)CH2OH) in aqueous solution have been studied using FTIR while simultaneously monitoring the net chirality of the reaction mixture. The hydration reaction appears to be first‐order in the PO concentration with a rate constant of0.05 hr−1. More importantly, the reaction is enantioselective; the product PG retains the chirality of the 2C carbon in PO with ∼2 : 1 selectivity. The fact that there is some inversion of the chirality suggests that the dominant transition state is one in which the 2C−O bond in PO is cleaved, resulting in a close to planar transition state capable of inversion during hydration. If the transition state involved 1C−O cleavage it would retain the rigid chiral center of the PO reactant, preventing significant inversion.

     
    more » « less
  3. The enantiomers of chiral amino acids play versatile roles in biological systems including humans. They are also very useful in the asymmetric synthesis of diverse chiral organic compounds. Therefore, identifying a specific amino acid and distinguishing it from its enantiomer are of great importance. Although significant progress has been made in the development of fluorescent probes for amino acids, most of them are not capable of conducting simultaneous chemoselective and enantioselective detection of a specific amino acid enantiomer. In this article, several fluorescent probes have been designed and synthesized for chemoselective as well as enantioselective recognition of certain amino acid enantiomers. ( S )-1 shows greatly enhanced fluorescence in the presence of l -glutamic acid and l -aspartic acid, but produces no or little fluorescence response toward their opposite enantiomers and other amino acids. ( R )-4 in combination with Zn 2+ shows greatly enhanced fluorescence in the presence of l -serine. ( S )-6 is designed for the selective recognition of histidine. Micelles made of an amphiphilic diblock copolymer are used to encapsulate the water-insoluble compound ( S )-8 which shows chemoselective as well as enantioselective fluorescence enhancement with l -lysine in the presence of Zn 2+ in aqueous solution. The same micelles are also used to encapsulate several ( S )-1,1′-binaphthyl-based monoaldehydes ( S )-10 for the chemoselective and enantioselective fluorescence recognition of l -tryptophan in the presence of Zn 2+ in aqueous solution. These findings have demonstrated that highly selective fluorescence identification of a specific amino acid enantiomer can be achieved by incorporating certain functional groups at the designated locations of the 1,1′-binaphthyls. The binaphthyl core structure of these probes provides both a chirality source and highly tunable fluorescence properties. Matching the structure and chirality of these probes with those of the specific amino acid enantiomers can generate structurally rigid reaction products and give rise to greatly enhanced fluorescence. The strategies of this work can be further expanded to develop fluorescent probes for the specific identification of many amino acids of interest. This should facilitate the analysis of chiral amino acids in various applications. The outlook of this research and its comparison with other methods are also discussed. 
    more » « less
  4. Abstract

    The discovery and application of new types of helical peptidic foldamers have been an attractive endeavor to enable the development of new materials, catalysts and biological molecules. To maximize their application potential through structure-based design, it is imperative to control their helical handedness based on their molecular scaffold. Herein we first demonstrate the generalizability of the solid-state right-handed helical propensity of the 413-helix of L-α/L-sulfono-γ-AA peptides that as short as 11-mer, using the high-resolution X-ray single crystallography. The atomic level folding conformation of the foldamers was also elucidated by 2D NMR and circular dichroism under various conditions. Subsequently, we show that the helical handedness of this class of foldamer is controlled by the chirality of their chiral side chains, as demonstrated by the left-handed 413-helix comprising 1:1 D-α/D-sulfono-γ-AA peptide. In addition, a heterochiral coiled-coil-like structure was also revealed for the first time, unambiguously supporting the impact of chirality on their helical handedness. Our findings enable the structure-based design of unique folding biopolymers and materials with the exclusive handedness or the racemic form of the foldamers in the future.

     
    more » « less
  5. The interactions of ligand-functionalized nanoparticles with the cell membrane affect cellular uptake, cytotoxicity, and related behaviors, but relating these interactions to ligand properties remains challenging. In this work, we perform coarse-grained molecular dynamics simulations to study how the adsorption of ligand-functionalized cationic gold nanoparticles (NPs) to a single-component lipid bilayer (as a model cell membrane) is influenced by ligand end group lipophilicity. A set of 2-nm diameter NPs, each coated with a monolayer of organic ligands that differ only in their end groups, was simulated to mimic NPs recently studied experimentally. Metadynamics calculations were performed to determine key features of the free energy landscape for adsorption as a function of the distance of the NP from the bilayer and the number of NP-lipid contacts. These simulations revealed that NP adsorption is thermodynamically favorable for all NPs due to the extraction of lipids from the bilayer and into the NP monolayer. To resolve ligand-dependent differences in adsorption behavior, string method calculations were performed to compute minimum free energy pathways for adsorption. These calculations revealed a surprising non-monotonic dependence of the free energy barrier for adsorption on ligand end group lipophilicity. Large free energy barriers are predicted for the least lipophilic end groups because favorable NP-lipid contacts are initiated only through the unfavorable protrusion of lipid tail groups out of the bilayer. The smallest free energy barriers are predicted for end groups of intermediate lipophilicity which promote NP-lipid contacts by intercalating within the bilayer. Unexpectedly, large free energy barriers are also predicted for the most lipophilic end groups which remain sequestered within the ligand monolayer rather than intercalating within the bilayer. These trends are broadly in agreement with past experimental measurements and reveal how subtle variations in ligand lipophilicity dictate adsorption mechanisms and associated kinetics by influencing the interplay of lipid-ligand interactions. 
    more » « less