In order to create professional development experiences, curriculum materials, and policies that support elementary school teachers to embed computational thinking (CT) in their teaching, researchers and teacher educators must under- stand ways teachers see CT as connecting to their classroom practices. Taking the viewpoint that teachers’ initial ideas about CT can serve as useful resources on which to build ed- ucational experiences, we interviewed 12 elementary school teachers to probe their understanding of six components of CT (abstraction, algorithmic thinking, automation, debug- ging, decomposition, and generalization) and how those com- ponents relate to their math and science teaching. Results suggested that teachers saw stronger connections between CT and their mathematics instruction than between CT and their science instruction. We also found that teachers draw upon their existing knowledge of CT-related terminology to make connections to their math and science instruction that could be leveraged in professional development. Teachers were, however, concerned about bringing CT into teaching due to limited class time and the difficulties of addressing high level CT in developmentally appropriate ways. We discuss these results and their implications future research and the design of professional development, sharing examples of how we used teachers’ initial ideas as the foundation of a workshop introducing them to computational thinking.
more »
« less
Workshops and Co-design Can Help Teachers Integrate Computational Thinking into Their K-12 STEM Classes
This work aims to help high school STEM teachers integrate computational thinking (CT) into their classrooms by engaging teachers as curriculum co-designers. K-12 teachers who are not trained in computer science may not see the value of CT in STEM classrooms and how to engage their students in computational practices that reflect the practices of STEM professionals. To this end, we developed a 4-week professional development workshop for eight science and mathematics high school teachers to co-design computationally enhanced curriculum with our team of researchers. The workshop first provided an introduction to computational practices and tools for STEM education. Then, teachers engaged in co-design to enhance their science and mathematics curricula with computational practices in STEM. Data from surveys and interviews showed that teachers learned about computational thinking, computational tools, coding, and the value of collaboration after the professional development. Further, they were able to integrate multiple computational tools that engage their students in CT-STEM practices. These findings suggest that teachers can learn to use computational practices and tools through workshops, and that teachers collaborating with researchers in co-design to develop computational enhanced STEM curriculum may be a powerful way to engage students and teachers with CT in K-12 classrooms.
more »
« less
- Award ID(s):
- 1640201
- PAR ID:
- 10203763
- Editor(s):
- Kong, S.C.
- Date Published:
- Journal Name:
- Proceedings of International Conference on Computational Thinking Education 2020
- Page Range / eLocation ID:
- 63-68
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Gresalfi, M. and (Ed.)Teachers in K-12 science classrooms play a key role in helping their students engage in computational thinking (CT) activities that reflect authentic science practices. However, we know less about how to support teachers in integrating CT into their classrooms. This paper presents a case of one science teacher over three years as she participated in a Design Based Implementation Research project focused on integrating CT into science curriculum. We analyze her professional growth as a designer and instructor as she created and implemented three computationally-enriched science units with the support of our research team. Results suggest that she became more confident in her understanding of and ability, leading to greater integration of CT in the science units. Relationships with the research team and co-design experiences mediated this growth. Findings yield implications for how best to support teachers in collaborative curriculum design.more » « less
-
null (Ed.)While the Next Generation Science Standards set an expectation for developing computer science and computational thinking (CT) practices in the context of science subjects, it is an open question as to how to create curriculum and assessments that develop and measure these practices. In this poster, we show one possible solution to this problem: to introduce students to computer science through infusing computational thinking practices ("CT-ifying") science classrooms. To address this gap, our group has worked to explicitly characterize core CT-STEM practices as specific learning objectives and we use these to guide our development of science curriculum and assessments. However, having these learning objectives in mind is not enough to actually create activities that engage students in CT practices. We have developed along with science teachers, a strategy of examining a teacher’s existing curricula and identifying potential activities and concepts to “CT-ify”, rather than creating entirely new curricula from scratch by using the concept of scale as an “attack vector” to design science units that integrate computational thinking practices into traditional science curricula. We demonstrate how we conceptualize four different versions of scale in science, 1. Time, 2. Size, 3. Number, and 4. Repeatability. We also present examples of these concepts in traditional high school science curricula that hundreds of students in a large urban US school district have used.more » « less
-
This article describes a professional development (PD) model, the CT-Integration Cycle, that supports teachers in learning to integrate computational thinking (CT) and computer science principles into their middle school science and STEM instruction. The PD model outlined here includes collaborative design (codesign; Voogt et al., 2015) of curricular units aligned with the Next Generation Science Standards (NGSS) that use programmable sensors. Specifically, teachers can develop or modify curricular materials to ensure a focus on coherent, student-driven instruction through the investigation of scientific phenomena that are relevant to students and integrate CT and sensor technology. Teachers can implement these storylines and collaboratively reflect on their instructional practices and student learning. Throughout this process, teachers may develop expertise in CT-integrated science instruction as they plan and use instructional practices aligned with the NGSS and foreground CT. This paper describes an examination of a group of five middle school teachers’ experiences during one iteration of the CT-Integration Cycle, including their learning, planning, implementation, and reflection on a unit they codesigned. Throughout their participation in the PD, the teachers expanded their capacity to engage deeply with CT practices and thoughtfully facilitated a CT-integrated unit with their students.more » « less
-
null (Ed.)This article describes a professional development (PD) model, the CT- Integration Cycle, that supports teachers in learning to integrate computational thinking (CT) and computer science principles into their middle school science and STEM instruction. The PD model outlined here includes collaborative design (codesign; Voogt et al., 2015) of curricular units aligned with the Next Generation Science Standards (NGSS) that use programmable sensors. Specifically, teachers can develop or modify curricular materials to ensure a focus on coherent, student-driven instruction through the investigation of scientific phenomena that are relevant to students and integrate CT and sensor technology. Teachers can implement these storylines and collaboratively reflect on their instructional practices and student learning. Throughout this process, teachers may develop expertise in CT-integrated science instruction as they plan and use instructional practices aligned with the NGSS and foreground CT. This paper describes an examination of a group of five middle school teachers’ experiences during one iteration of the CT- Integration Cycle, including their learning, planning, implementation, and reflection on a unit they codesigned. Throughout their participation in the PD, the teachers expanded their capacity to engage deeply with CT practices and thoughtfully facilitated a CT-integrated unit with their students.more » « less