Upon infection of its host cell, human immunodeficiency virus (HIV) establishes a quiescent and non-productive state capable of spontaneous reactivation. Diverse cell types harboring the provirus form a latent reservoir, constituting a major obstacle to curing HIV. Here, we investigate the effects of latency reversal agents (LRAs) in an HIV-infected THP-1 monocyte cell line in vitro. We demonstrate that leading drug treatments synergize activation of the HIV long terminal repeat (LTR) promoter. We establish a latency model in THP-1 monocytes using a replication incompetent HIV reporter vector with functional Tat, and show that chromatin modifiers synergize with a potent transcriptional activator to enhance HIV reactivation, similar to T-cells. Furthermore, leading reactivation cocktails are shown to differentially affect latency reactivation and surface expression of chemokine receptor type 4 (CXCR4), leading to altered host cell migration. This study investigates the effect of chromatin-modifying LRA treatments on HIV latent reactivation and cell migration in monocytes. As previously reported in T-cells, epigenetic mechanisms in monocytes contribute to controlling the relationship between latent reactivation and cell migration. Ultimately, advanced “Shock and Kill” therapy needs to successfully target and account for all host cell types represented in a complex and composite latency milieu.
more »
« less
Cell size dependent migration of T-cells latently infected with HIV
Human immunodeficiency virus (HIV) preferentially infects T-lymphocytes by integrating into host DNA and forming a latent transcriptionally silent provirus. As previously shown, HIV-1 alters migration modes of T-lymphocytes by co-regulating viral gene expression with human C-X-C chemokine receptor-4 (CXCR4). Here, we show that motility of infected T-lymphocytes is cell size dependent. In cell migration assays, migrating cells are consistently larger than non-migrating cells. This effect is drug-treatment independent. The cell size dependent motility observed in a previously generated Jurkat latency model correlates with the motility of primary human CD4+ T-cells containing a modified HIV-1 full-length construct JLatd2GFP. In addition, large migrating T-cells, latently infected with HIV, show a slightly decreased rate of reactivation from latency. these results demonstrate that HIV reactivation is cell migration-dependent, where host cell size acts as a catalyst for altered migration velocity. We believe that host cell size controlled migration uncovers an additional mechanism of cellular controlled viral fate determination important for virus dissemination and reactivation from latency. This observation may provide more insights into viral-host interactions regulating cell migration and reactivation from latency and helps in the design and implementation of novel therapeutic strategies.
more »
« less
- Award ID(s):
- 1943740
- PAR ID:
- 10203866
- Date Published:
- Journal Name:
- Journal of life sciences
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2688-1020
- Page Range / eLocation ID:
- 1-8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
HIV latency regulation in monocytes and macrophages can vary according to signals directing differentiation, polarization, and function. To investigate these processes, we generated an HIV latency model in THP-1 monocytes and showed differential levels of HIV reactivation among clonal populations. Monocyte-to-macrophage differentiation of HIV-infected primary human CD14+ and THP-1 cells induced HIV reactivation and showed that virus production increased concomitant with macrophage differentiation. We applied the HIV-infected THP-1 monocyte-to-macrophage (MLat) model to assess the biological mechanisms regulating HIV latency dynamics during monocyte-to-macrophage differentiation. We pinpointed protein kinase C signaling pathway activation and Cyclin T1 upregulation as inherent differentiation mechanisms that regulate HIV latency reactivation. Macrophage polarization regulated latency, revealing proinflammatory M1 macrophages suppressed HIV reactivation while anti-inflammatory M2 macrophages promoted HIV reactivation. Because macrophages rely on reactive-oxygen species (ROS) to exert numerous cellular functions, we disrupted redox pathways and found that inhibitors of the thioredoxin (Trx) system acted as latency-promoting agents in T-cells and monocytes, but opposingly acted as latency-reversing agents in macrophages. We explored this mechanism with Auranofin, a clinical candidate for reducing HIV reservoirs, and demonstrated Trx reductase inhibition led to ROS induced NF-κB activity, which promoted HIV reactivation in macrophages, but not in T-cells and monocytes. Collectively, cell type-specific differences in HIV latency regulation could pose a barrier to HIV eradication strategies.more » « less
-
Abstract HIV-1 persistence during ART is due to the establishment of long-lived viral reservoirs in resting immune cells. Using an NHP model of barcoded SIVmac239 intravenous infection and therapeutic dosing of anti-TGFBR1 inhibitor galunisertib (LY2157299), we confirm the latency reversal properties of in vivo TGF-β blockade, decrease viral reservoirs and stimulate immune responses. Treatment of eight female, SIV-infected macaques on ART with four 2-weeks cycles of galunisertib leads to viral reactivation as indicated by plasma viral load and immunoPET/CT with a64Cu-DOTA-F(ab’)2-p7D3-probe. Post-galunisertib, lymph nodes, gut and PBMC exhibit lower cell-associated (CA-)SIV DNA and lower intact pro-virus (PBMC). Galunisertib does not lead to systemic increase in inflammatory cytokines. High-dimensional cytometry, bulk, and single-cell (sc)RNAseq reveal a galunisertib-driven shift toward an effector phenotype in T and NK cells characterized by a progressive downregulation in TCF1. In summary, we demonstrate that galunisertib, a clinical stage TGF-β inhibitor, reverses SIV latency and decreases SIV reservoirs by driving T cells toward an effector phenotype, enhancing immune responses in vivo in absence of toxicity.more » « less
-
Upon treatment removal, spontaneous reactivation of latently infected T cells remains a major barrier toward curing HIV. Therapies that reactivate and clear the latent reservoir are only partially effective, while latency-promoting agents (LPAs) used to suppress reactivation and stabilize latency are understudied and lack diversity in their mechanisms of action. Here, we identify additional LPAs using a screen for gene-expression fluctuations (or “noise”) that drive cell-fate specification and control HIV reactivation from latency. Single-cell protein dynamics of a minimal HIV gene circuit were monitored with time-lapse fluorescence microscopy. We screened 1,806 drugs, out of which 279 modulate noise magnitude or half autocorrelation time. Next, we tested the strongest noise modulators in a Jurkat T cell latency model and discovered three LPAs that would be overlooked by quantifying their mean expression levels alone. The LPAs reduced reactivation of latency in both Jurkat and primary cell models when challenged by synergistic and potent combinations of HIV activators. The two strongest LPAs, NSC 401005 and NSC 400938, are structurally and functionally related to inhibitors of thioredoxin reductase, a protein involved in maintaining redox balance in host cells. Experiments with multiple functional analogs revealed two additional LPAs, PX12 and tiopronin, and suggest a potential LPA family, within which some are commercially available and Food and Drug Administration–approved. The LPAs presented here may provide new strategies to complement antiretroviral treatments. Screening for gene expression noise holds the potential for drug discovery in other diseases.more » « less
-
Individuals infected by human immunodeficiency virus (HIV) are under oxidative stress due to the imbalance between reactive oxygen species (ROS) production and elimination. This paper presents a mathematical model with the cytotoxic T lymphocytes (CTL) immune response to examine the role of ROS in the dynamics of HIV infection. We classify the equilibria of the model and study the stability of these equilibria. Numerical simulations show that incorporating ROS and CTL immune response into the model leads to very rich dynamics, including bistable phenomena and periodic solutions. Although the current antiretroviral therapy can suppress viral load to the undetectable level, it cannot eradicate the virus. A high level of ROS may be a factor for HIV persistence in patients despite suppressive therapy. These results suggest that oxidative damage and anti-oxidant therapy should be considered in the study of HIV infection and treatment.more » « less
An official website of the United States government

