skip to main content


Title: Modeling the Effect of Reactive Oxygen Species and CTL Immune Response on HIV Dynamics
Individuals infected by human immunodeficiency virus (HIV) are under oxidative stress due to the imbalance between reactive oxygen species (ROS) production and elimination. This paper presents a mathematical model with the cytotoxic T lymphocytes (CTL) immune response to examine the role of ROS in the dynamics of HIV infection. We classify the equilibria of the model and study the stability of these equilibria. Numerical simulations show that incorporating ROS and CTL immune response into the model leads to very rich dynamics, including bistable phenomena and periodic solutions. Although the current antiretroviral therapy can suppress viral load to the undetectable level, it cannot eradicate the virus. A high level of ROS may be a factor for HIV persistence in patients despite suppressive therapy. These results suggest that oxidative damage and anti-oxidant therapy should be considered in the study of HIV infection and treatment.  more » « less
Award ID(s):
1950254
NSF-PAR ID:
10350850
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Journal of Bifurcation and Chaos
Volume:
31
Issue:
13
ISSN:
0218-1274
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In the secondary lymphoid tissues, human immunodeficiency virus (HIV) can replicate both in the follicular and the extrafollicular compartments. Yet, virus is concentrated in the follicular compartment in the absence of antiretroviral therapy, in part due to the lack of cytotoxic T lymphocyte (CTL)-mediated activity there. CTL home to the extrafollicular compartment, where they can suppress virus load to relatively low levels. We use mathematical models to show that this compartmentalization can explain seemingly counterintuitive observations. First, it can explain the observed constancy of the viral decline slope during antiviral therapy in the peripheral blood, irrespective of the presence of CTL in SIV-infected macaques, under the assumption that CTL-mediated lysis significantly contributes to virus suppression. Second, it can account for the relatively long times it takes for CTL escape mutants to emerge during chronic infection even if CTL-mediated lysis is responsible for virus suppression. The reason is the heterogeneity in CTL activity, and the consequent heterogeneity in selection pressure between the follicular and extrafollicular compartments. Hence, to understand HIV dynamics more thoroughly, this analysis highlights the importance of measuring virus populations separately in the extrafollicular and follicular compartments rather than using virus load in peripheral blood as an observable; this hides the heterogeneity between compartments that might be responsible for the particular patterns seen in the dynamics and evolution of the HIV in vivo.

     
    more » « less
  2. Abstract

    Drugs of abuse, such as opiates, have been widely associated with enhancing HIV replication, accelerating disease progression and diminishing host-immune responses, thereby making it harder to effectively manage HIV infection. It is thus important to study the effects of drugs of abuse on HIV-infection and immune responses. Here, we develop mathematical models that incorporate the effects of morphine-altered antibody responses on HIV/SIV dynamics. Based on fitting the model to experimental data from simian immunodeficiency virus (SIV) infections in control and morphine-addicted macaques, we found that two of the most significant effects of virus specific antibodies are neutralizing viral particles and enhancing viral clearance. Using our model, we quantified how morphine alters virus-specific antibody responses, and how this alteration affects the key components of virus dynamics such as infection rate, virus clearance, viral load, CD4+T cell count, and CD4+T cell loss in SIV-infected macaques under conditioning with morphine. We found that in a subpopulation of SIV-infected morphine addicted macaques, the presence of drugs of abuse may cause significantly diminished antibody responses, resulting in more severe infection with increased SIV infectivity, a decreased viral clearance rate, increased viral load, and higher CD4+T cell loss.

     
    more » « less
  3. Regoes, Roland R. (Ed.)
    While highly active antiretroviral therapy (HAART) is successful in controlling the replication of Human Immunodeficiency Virus (HIV-1) in many patients, currently there is no cure for HIV-1, presumably due to the presence of reservoirs of the virus. One of the least studied viral reservoirs is the brain, which the virus enters by crossing the blood-brain barrier (BBB) via macrophages, which are considered as conduits between the blood and the brain. The presence of HIV-1 in the brain often leads to HIV associated neurocognitive disorders (HAND), such as encephalitis and early-onset dementia. In this study we develop a novel mathematical model that describes HIV-1 infection in the brain and in the plasma coupled via the BBB. The model predictions are consistent with data from macaques infected with a mixture of simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV). Using our model, we estimate the rate of virus transport across the BBB as well as viral replication inside the brain, and we compute the basic reproduction number. We also carry out thorough sensitivity analysis to define the robustness of the model predictions on virus dynamics inside the brain. Our model provides useful insight into virus replication within the brain and suggests that the brain can be an important reservoir causing long-term viral persistence. 
    more » « less
  4. Summary

    Mathematical modelling of human immunodeficiency virus (HIV) dynamics has played an important role in acquired immune deficiency syndrome research. Deterministic dynamic models have been developed to study the viral dynamic process for understanding the pathogenesis of HIV type 1 infection and antiviral treatment strategies. We propose a new multistage estimation procedure which uses data, HIV viral load and CD4+ T-cell counts, from an acquired immune deficiency syndrome clinical study, to estimate the parameters in a long-term HIV dynamic model containing both constant and time varying parameters. Simulation studies and a real data application show that the methods proposed are efficient and appropriate to estimate both constant and time varying parameters in long-term HIV dynamic models.

     
    more » « less
  5. The failure of traditional interventions to block and cure HIV infections has led to novel proposals that involve treating infections with therapeutic viruses–infectious viruses that specifically inhibit HIV propagation in the host. Early efforts in evaluating these proposals have been limited chiefly to mathematical models of dynamics, for lack of suitable empirical systems. Here we propose, develop and analyze an empirical system of a therapeutic virus that protects a host cell population against a lethal virus. The empirical system usesE. colibacteria as the host cell population, an RNA phage as the lethal virus and a filamentous phage as the therapeutic virus. Basic dynamic properties are established for each virus alone and then together. Observed dynamics broadly agree with those predicted by a computer simulation model, although some differences are noted. Two cases of dynamics are contrasted, differing in whether the therapeutic virus is introduced before the lethal virus or after the lethal virus. The therapeutic virus increases in both cases but by different mechanisms. With the therapeutic virus introduced first, it spreads infectiously without any appreciable change in host dynamics. With the therapeutic virus introduced second, host abundance is depressed at the time therapy is applied; following an initial period of therapeutic virus spread by infection, the subsequent rise of protection is through reproduction by hosts already protected. This latter outcome is due to inheritance of the therapeutic virus state when the protected cell divides. Overall, the work establishes the feasibility and robustness to details of a viral interference using a therapeutic virus.

     
    more » « less