Emerging infectious diseases have been especially devastating to amphibians, the most endangered class of vertebrates. For amphibians, the greatest disease threat is chytridiomycosis, caused by one of two chytridiomycete fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans ( Bsal ). Research over the last two decades has shown that susceptibility to this disease varies greatly with respect to a suite of host and pathogen factors such as phylogeny, geography (including abiotic factors), host community composition, and historical exposure to pathogens; yet, despite a growing body of research, a comprehensive understanding of global chytridiomycosis incidence remains elusive. In a large collaborative effort, Bd -Maps was launched in 2007 to increase multidisciplinary investigations and understanding using compiled global Bd occurrence data ( Bsal was not discovered until 2013). As its database functions aged and became unsustainable, we sought to address critical needs utilizing new technologies to meet the challenges of aggregating data to facilitate research on both Bd and Bsal . Here, we introduce an advanced central online repository to archive, aggregate, and share Bd and Bsal data collected from around the world. The Amphibian Disease Portal ( https://amphibiandisease.org ) addresses several critical community needs while also helping to build basic biological knowledge of chytridiomycosis. This portal could be useful for other amphibian diseases and could also be replicated for uses with other wildlife diseases. We show how the Amphibian Disease Portal provides: (1) a new repository for the legacy Bd- Maps data; (2) a repository for sample-level data to archive datasets and host published data with permanent DOIs; (3) a flexible framework to adapt to advances in field, laboratory, and informatics technologies; and (4) a global aggregation of Bd and Bsal infection data to enable and accelerate research and conservation. The new framework for this project is built using biodiversity informatics best practices and metadata standards to ensure scientific reproducibility and linkages across other biological and biodiversity repositories.
more »
« less
Isolation and maintenance of Batrachochytrium salamandrivorans cultures
Discovered in 2013, the chytrid fungus Batrachochytrium salamandrivorans ( Bsal ) is an emerging amphibian pathogen that causes ulcerative skin lesions and multifocal erosion. A closely related pathogen, B. dendrobatidis ( Bd ), has devastated amphibian populations worldwide, suggesting that Bsal poses a significant threat to global salamander biodiversity. To expedite research into this emerging threat, we seek to standardize protocols across the field so that results of laboratory studies are reproducible and comparable. We have collated data and experience from multiple labs to standardize culturing practices of Bsal . Here we outline common culture practices including a medium for standardized Bsal growth, standard culturing protocols, and a method for isolating Bsal from infected tissue.
more »
« less
- PAR ID:
- 10203870
- Date Published:
- Journal Name:
- Diseases of Aquatic Organisms
- Volume:
- 140
- ISSN:
- 0177-5103
- Page Range / eLocation ID:
- 1 to 11
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Western palearctic salamander susceptibility to the skin disease caused by the amphibian chytrid fungusBatrachochytrium salamandrivorans(Bsal) was recognized in 2014, eliciting concerns for a potential novel wave of amphibian declines following theB. dendrobatidis(Bd) chytridiomycosis global pandemic. Although Bsal had not been detected in North America, initial experimental trials supported the heightened susceptibility of caudate amphibians to Bsal chytridiomycosis, recognizing the critical threat this pathogen poses to the North American salamander biodiversity hotspot. Here, we take stock of 10 years of research, collaboration, engagement, and outreach by the North American Bsal Task Force. We summarize main knowledge and conservation actions to both forestall and respond to Bsal invasion into North America. We address the questions: what have we learned; what are current challenges; and are we ready for a more effective reaction to Bsal’s eventual detection? We expect that the many contributions to preemptive planning accrued over the past decade will pay dividends in amphibian conservation effectiveness and can inform future responses to other novel wildlife diseases and extreme threats.more » « less
-
Abstract Batrachochytrium salamandrivorans ( Bsal ) is a fungal pathogen of amphibians that is emerging in Europe and could be introduced to North America through international trade or other pathways. To evaluate the risk of Bsal invasion to amphibian biodiversity, we performed dose-response experiments on 35 North American species from 10 families, including larvae from five species. We discovered that Bsal caused infection in 74% and mortality in 35% of species tested. Both salamanders and frogs became infected and developed Bsal chytridiomycosis. Based on our host susceptibility results, environmental suitability conditions for Bsal , and geographic ranges of salamanders in the United States, predicted biodiversity loss is expected to be greatest in the Appalachian Region and along the West Coast. Indices of infection and disease susceptibility suggest that North American amphibian species span a spectrum of vulnerability to Bsal chytridiomycosis and most amphibian communities will include an assemblage of resistant, carrier, and amplification species. Predicted salamander losses could exceed 80 species in the United States and 140 species in North America.more » « less
-
null (Ed.)Transmission is the fundamental process whereby pathogens infect their hosts and spread through populations, and can be characterized using mathematical functions. The functional form of transmission for emerging pathogens can determine pathogen impacts on host populations and can inform the efficacy of disease management strategies. By directly measuring transmission between infected and susceptible adult eastern newts (Notophthalmus viridescens) in aquatic mesocosms, we identified the most plausible transmission function for the emerging amphibian fungal pathogen Batrachochytrium salamandrivorans (Bsal). Although we considered a range of possible transmission functions, we found that Bsal transmission was best explained by pure frequency dependence. We observed that >90% of susceptible newts became infected within 17 days post-exposure to an infected newt across a range of host densities and initial infection prevalence treatments. Under these conditions, we estimated R_0 = 4.9 for Bsal in an eastern newt population. Our results suggest that Bsal has the capability of driving eastern newt populations to extinction and that managing host density may not be an effective management strategy. Intervention strategies that prevent Bsal introduction or increase host resistance or tolerance to infection may be more effective. Our results add to the growing empirical evidence that transmission of wildlife pathogens can saturate and be functionally frequency-dependent.more » « less
-
Xuan Liu (Ed.)Aim: Amphibian populations are threatened globally by anthropogenic change and Batrachochytrium dendrobatidis (Bd), a fungal pathogen causing chytridiomycosis disease to varying degrees of severity. A closely related new fungal pathogen, Batrachochytrium salamandrivorans (Bsal), has recently left its supposed native range in Asia and decimated some salamander populations in Europe. Despite being noticed initially for causing chytridiomycosis-related population declines in salamanders, Bsal can also infect anurans and cause non-lethal chytridiomycosis or asymptomatic infections in salamanders. Bsal has not yet been detected in the United States, but given the United States has the highest salamander biodiversity on Earth, predictive assessments of salamander risk to Bsal infection will enable proactive allocation of research and conservation efforts into disease prevention and mitigation. Location: The United States, Europe and Asia. Methods: We first predicted the environmental suitability for the Bsal pathogen in the United States through an ecological niche model based on the pathogen's known native range in Asia, validated on the observed invasive range in Europe using bioclimatic, land cover, elevation, soil characteristics and human modification variables. Second, we predicted the susceptibility of salamander species to Bsal infection using a machine-learning model that correlated life history traits with published data on confirmed species infections. Finally, we mapped the geographic ranges of the subset of species that were predicted to be susceptible to Bsal infection. Results: In the United States, the overlap of environmental suitability and susceptible salamander species was greatest in the Pacific Northwest, near the Gulf of Mexico, and along the Atlantic coast, and in inland states east of the Plains region. Main Conclusions: The overlap of these metrics identify salamander populations that may be at risk of developing Bsal infection and suggests priorities for pre-emptive research and conservation measures to protect at-risk salamander species from an additional pathogenic threat.more » « less
An official website of the United States government

