Abstract Batrachochytrium salamandrivorans ( Bsal ) is a fungal pathogen of amphibians that is emerging in Europe and could be introduced to North America through international trade or other pathways. To evaluate the risk of Bsal invasion to amphibian biodiversity, we performed dose-response experiments on 35 North American species from 10 families, including larvae from five species. We discovered that Bsal caused infection in 74% and mortality in 35% of species tested. Both salamanders and frogs became infected and developed Bsal chytridiomycosis. Based on our host susceptibility results, environmental suitability conditions for Bsal , and geographic ranges of salamanders in the United States, predicted biodiversity loss is expected to be greatest in the Appalachian Region and along the West Coast. Indices of infection and disease susceptibility suggest that North American amphibian species span a spectrum of vulnerability to Bsal chytridiomycosis and most amphibian communities will include an assemblage of resistant, carrier, and amplification species. Predicted salamander losses could exceed 80 species in the United States and 140 species in North America.
more »
« less
A spatially explicit risk assessment of salamander populations to Batrachochytrium salamandrivorans in the United States
Aim: Amphibian populations are threatened globally by anthropogenic change and Batrachochytrium dendrobatidis (Bd), a fungal pathogen causing chytridiomycosis disease to varying degrees of severity. A closely related new fungal pathogen, Batrachochytrium salamandrivorans (Bsal), has recently left its supposed native range in Asia and decimated some salamander populations in Europe. Despite being noticed initially for causing chytridiomycosis-related population declines in salamanders, Bsal can also infect anurans and cause non-lethal chytridiomycosis or asymptomatic infections in salamanders. Bsal has not yet been detected in the United States, but given the United States has the highest salamander biodiversity on Earth, predictive assessments of salamander risk to Bsal infection will enable proactive allocation of research and conservation efforts into disease prevention and mitigation. Location: The United States, Europe and Asia. Methods: We first predicted the environmental suitability for the Bsal pathogen in the United States through an ecological niche model based on the pathogen's known native range in Asia, validated on the observed invasive range in Europe using bioclimatic, land cover, elevation, soil characteristics and human modification variables. Second, we predicted the susceptibility of salamander species to Bsal infection using a machine-learning model that correlated life history traits with published data on confirmed species infections. Finally, we mapped the geographic ranges of the subset of species that were predicted to be susceptible to Bsal infection. Results: In the United States, the overlap of environmental suitability and susceptible salamander species was greatest in the Pacific Northwest, near the Gulf of Mexico, and along the Atlantic coast, and in inland states east of the Plains region. Main Conclusions: The overlap of these metrics identify salamander populations that may be at risk of developing Bsal infection and suggests priorities for pre-emptive research and conservation measures to protect at-risk salamander species from an additional pathogenic threat.
more »
« less
- Award ID(s):
- 1717282
- PAR ID:
- 10355329
- Editor(s):
- Xuan Liu
- Date Published:
- Journal Name:
- Diversity and Distributions
- ISSN:
- 1366-9516
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Synopsis Emerging infectious diseases have been of particular interest as a major threat to global biodiversity. In amphibians, two fungal sister taxa, Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal), along with the viral pathogen ranavirus, have affected global populations. Factors such as host traits, abiotic and biotic environmental conditions, and pathogen prevalence contribute to species-specific disease susceptibility. The eastern United States is home to the Appalachian Mountain system, known as a “hotspot” for salamander biodiversity. Bd and ranavirus are present throughout the Appalachians, and a Bsal emergence could be imminent. Throughout the Appalachians are the spotted salamanders, Ambystoma maculatum, a mostly terrestrial salamander that participates in mass breeding migration to ponds and vernal pools in the late spring. Previous experimental studies have shown that spotted salamanders appear to be resistant to Bd and Bsal infection, but the mechanisms behind Bd defense remain unknown. Spotted salamanders emerging from their overwintering habitats were hypothesized to have potent anti-Bd function expressed in their mucus and in their skin microbiomes, as a countermeasure to annual Bd re-emergence. We used non-invasive sampling at two pools during the spotted salamander annual breeding event to (I) determine pathogen prevalence, (II) quantify the antifungal potential of salamander skin mucus, and (III) characterize the diversity and composition of the salamander skin microbiome and contrast it to that of the corresponding environmental microbiome. We did not detect any Bd, Bsal, or ranavirus in the salamanders. The salamander mucus did not inhibit Bd growth in vitro, and anti-Bd bacteria were at low relative abundance in the microbiome. The salamander microbiome sourced a proportion of bacteria from the environment and appeared to select rare taxa from their respective pools; however, their functional relevance in pathogen defense is unclear. Our results suggest that the spotted salamander mucosal secretions and skin microbiome are not the mechanisms of defense against Bd. Rather, elements not captured by the mucosome (e.g., immune cell gene expression) may confer resistance. This study contributes to the understanding of salamander intraspecies variation in disease susceptibility.more » « less
-
null (Ed.)Batrachochytrium salamandrivorans is an emerging fungus that is causing salamander declines in Europe. We evaluated whether an invasive frog species (Cuban treefrog, Osteopilus septentrionalis) that is found in international trade could be an asymptomatic carrier when exposed to zoospore doses known to infect salamanders. We discovered that Cuban treefrogs could be infected with B. salamandrivorans and, surprisingly, that chytridiomycosis developed in animals at the two highest zoospore doses. To fulfill Koch’s postulates, we isolated B. salamandrivorans from infected frogs, exposed eastern newts (Notophthalmus viridescens) to the isolate, and verified infection and disease by histopathology. This experiment represents the first documentation of B. salamandrivorans chytridiomycosis in a frog species and substantially expands the conservation threat and possible mobilization of this pathogen in trade.more » « less
-
The potential emergence of Batrachochytrium salamandrivorans (Bsal) in North America threatens salamander diversity and ecosystem functioning, thus an understanding of mechanisms influencing host survival during infection is key to predict future impacts. Previous studies indicate that temperature plays a role in regulating infection dynamics, in that access to a thermal gradient provides the means to prevent infections. Phenotypic flexibility is a likely mechanism, as temperature can enhance (or suppress) host functional capacity in both lunged and lungless salamanders. However, we know very little about how hosts are using thermal environments to achieve effective immune gene expression during Bsal infection. Through a series of experiments, we aim to 1) reveal if interspecific differences in disease susceptibility and functional responses are exacerbated by thermal environments, 2) determine if hosts can minimize the metabolic costs of infections by selecting optimal environments, and 3) project susceptibility risk across the landscape using information about species’ thermal preferences. We discuss our plans to evaluate immune gene expression, metabolic rates and thermoregulation relating to infection with Bsal and access to different thermal environments in plethodontid salamanders from Florida. Additionally, to develop models to predict infection susceptibility, we are seeking collaborations in compiling data on thermal preferences and thermal limits across plethodontid salamander species.more » « less
-
Abstract Resistance and tolerance are unique host defence strategies that can limit the impacts of a pathogen on a host. However, for most wildlife–pathogen systems, there are still fundamental uncertainties regarding (a) how changes in resistance and tolerance can affect disease outcomes and (b) the mechanisms underlying resistance and tolerance in host populations.Here, we first compared observed patterns of resistance and tolerance and their effects on disease outcomes among salamander species that are susceptible to infection and mortality from the emerging fungal pathogenBatrachochytrium salamandrivorans(Bsal). We then tested whether two putative mechanisms that contribute to host resistance and tolerance, skin sloughing and skin lesion reduction, predicted reducedBsalgrowth rate or increased host survival during infection, respectively.We performed multi‐doseBsalchallenge experiments on four species of Salamandridae found throughout North America. We combined the laboratory experiments with dynamic models and sensitivity analysis to examine how changes in load‐dependent resistance and tolerance functions affectedBsal‐induced mortality risk. Finally, we used our disease model to test whether skin sloughing and lesion reduction predicted variability in infection outcomes not described byBsalinfection intensity.We found that resistance and tolerance differed significantly among salamander species, with the most susceptible species being both less resistance and less tolerant ofBsalinfection. Our dynamic model showed that the relative influence of resistance versus tolerance on host survival was species‐dependent—increasing resistance was only more influential than increasing tolerance for the least tolerant species where changes in pathogen load had a threshold‐like effect on host survival. Testing two candidate mechanisms of resistance and tolerance, skin sloughing and lesion reduction, respectively, we found limited support that either of these processes were strong mechanisms of host defence.Our study contributes to a broader understanding of resistance and tolerance in host–pathogen systems by showing that differences in host tolerance can significantly affect whether changes in resistance or tolerance have larger effects on disease outcomes, highlighting the need for species and even population‐specific management approaches that target host defence strategies. A freePlain Language Summarycan be found within the Supporting Information of this article.more » « less
An official website of the United States government

