The source angle localization problem is studied based on scattering of elastic waves in two dimensions by a phononic array and the exceptional points of its band structure. Exceptional points are complex singularities of a parameterized eigen-spectrum, where two modes coalesce with identical mode shapes. These special points mark the qualitative transitions in the system behavior and have been proposed for sensing applications. The equi-frequency band structures are analyzed with focus on the angle-dependent modal behaviors. At the exceptional points and critical angles, the eigen-modes switch their energy characteristics and symmetry, leading to enhanced sensitivity as the scattering response of the medium is inherently angle-dependent. An artificial neural network is trained with randomly weighted and superposed eigen-modes to achieve deep learning of the angle-dependent dynamics. The trained algorithm can accurately classify the incident angle of an unknown scattering signal, with minimal sidelobe levels and suppressed main lobewidth. The neural network approach shows superior localization performance compared with standard delay-and-sum technique. The proposed application of the phononic array highlights the physical relevance of band topology and eigen-modes to a technological application, adds extra strength to the existing localization methods, and can be easily enhanced with the fast-growing data-driven techniques.
more »
« less
Differentiable scattering matrix for optimization of photonic structures
The scattering matrix, which quantifies the optical reflection and transmission of a photonic structure, is pivotal for understanding the performance of the structure. In many photonic design tasks, it is also desired to know how the structure’s optical performance changes with respect to design parameters, that is, the scattering matrix’s derivatives (or gradient). Here we address this need. We present a new algorithm for computing scattering matrix derivatives accurately and robustly. In particular, we focus on the computation in semi-analytical methods (such as rigorous coupled-wave analysis). To compute the scattering matrix of a structure, these methods must solve an eigen-decomposition problem. However, when it comes to computing scattering matrix derivatives, differentiating the eigen-decomposition poses significant numerical difficulties. We show that the differentiation of the eigen-decomposition problem can be completely sidestepped, and thereby propose a robust algorithm. To demonstrate its efficacy, we use our algorithm to optimize metasurface structures and reach various optical design goals.
more »
« less
- PAR ID:
- 10203945
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 28
- Issue:
- 25
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 37773
- Size(s):
- Article No. 37773
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Throughout many scientific and engineering fields, including control theory, quantum mechanics, advanced dynamics, and network theory, a great many important applications rely on the spectral decomposition of matrices. Traditional methods such as the power iteration method, Jacobi eigenvalue method, and QR decomposition are commonly used to compute the eigenvalues and eigenvectors of a square and symmetric matrix. However, these methods suffer from certain drawbacks: in particular, the power iteration method can only find the leading eigen-pair (i.e., the largest eigenvalue and its corresponding eigenvector), while the Jacobi and QR decomposition methods face significant performance limitations when facing with large scale matrices. Typically, even producing approximate eigenpairs of a general square matrix requires at least O(N^3) time complexity, where N is the number of rows of the matrix. In this work, we exploit the newly developed memristor technology to propose a low-complexity, scalable memristor-based method for deriving a set of dominant eigenvalues and eigenvectors for real symmetric non-negative matrices. The time complexity for our proposed algorithm is O(N^2 /Δ) (where Δ governs the accuracy). We present experimental studies to simulate the memristor-supporting algorithm, with results demonstrating that the average error for our method is within 4%, while its performance is up to 1.78X better than traditional methods.more » « less
-
Randomized singular value decomposition (RSVD) is by now a well-established technique for efficiently computing an approximate singular value decomposition of a matrix. Building on the ideas that underpin RSVD, the recently proposed algorithm “randUTV” computes a full factorization of a given matrix that provides low-rank approximations with near-optimal error. Because the bulk of randUTV is cast in terms of communication-efficient operations such as matrix-matrix multiplication and unpivoted QR factorizations, it is faster than competing rank-revealing factorization methods such as column-pivoted QR in most high-performance computational settings. In this article, optimized randUTV implementations are presented for both shared-memory and distributed-memory computing environments. For shared memory, randUTV is redesigned in terms of an algorithm-by-blocks that, together with a runtime task scheduler, eliminates bottlenecks from data synchronization points to achieve acceleration over the standard blocked algorithm based on a purely fork-join approach. The distributed-memory implementation is based on the ScaLAPACK library. The performance of our new codes compares favorably with competing factorizations available on both shared-memory and distributed-memory architectures.more » « less
-
Learning a dynamical system from input/output data is a fundamental task in the control design pipeline. In the partially observed setting there are two components to identification: parameter estimation to learn the Markov parameters, and system realization to obtain a state space model. In both sub-problems it is implicitly assumed that standard numerical algorithms such as the singular value decomposition (SVD) can be easily and reliably computed. When trying to fit a high-dimensional model to data, even computing an SVD may be intractable. In this work we show that an approximate matrix factorization obtained using randomized methods can replace the standard SVD in the realization algorithm while maintaining the finite-sample performance and robustness guarantees of classical methods.more » « less
-
Fast solution of wave propagation in periodic structures usually relies on simplified approaches, such as analytical methods, transmission line models, scattering matrix approaches, plane wave methods, etc. For complex multi-dimensional problems, computationally intensive direct numerical simulation (DNS) is always needed. This study demonstrates a fast and accurate simulation methodology enabled by a physics-based learning methodology, derived from proper orthogonal decomposition (POD) and Galerkin projection, for periodic quantum nanostructure and photonic crystals. POD is a projection-based method that generates optimal basis functions (or POD modes) via solution data collected from DNSs. This process trains the POD modes to adapt parametric variations of the system and offers the best least squares (LS) fit to the solution using the smallest number of modes. This is very different from other projection approaches, e.g., Fourier, Legendre, Bessel, Airy functions, etc., that adopt assumed basis functions selected for the problem based on the solution form. After generating the optimal POD modes, Galerkin projection of the wave equation onto each of the POD modes is performed to close the model and incorporate physical principles guided by the wave equation. Such a rigorous approach offers efficient simulations with high accuracy and exhibits the extrapolation ability in cases reasonably beyond the training bounds. The POD-Galerkin methodology is applied in this study to predict band structures and wave solutions for 2D periodic quantum-dot and photonic-lattice structures. The plane-wave approach is also included in a periodic quantum-dot structure to illustrate the superior performance of the POD-Galerkin methodology. The POD-Galerkin approach offers a 2-order computing speedup for both nanostructure and optical superlattices, compared to DNS, when solving both the wave solution and band structure. If the band structure is the only concern, a 4-order improvement in computational efficiency can be achieved. Fig. 1(a) shows the optical superlattice in a demonstration, where a unit cell includes 22 discs with diagonally symmetrical refractive indices and the background index n = 1. The POD modes for this case are trained by TE mode electric field data collected from DNSs with variation of diagonally symmetrical refractive indices. The LS error of the predicted electric field wave solution from the POD-Galerkin approach, shown in Fig. 1(b) compared to DNS, is below 1% with just 8 POD modes that offer a more than 4-order reduction in the degrees of freedom, compared to DNS. In addition, an extremely accurate prediction of band structure is illustrated in Fig. 1(c) with a maximum error below 0.1% in the entire Brillouin zone.more » « less
An official website of the United States government
