skip to main content


Title: Differentiable scattering matrix for optimization of photonic structures

The scattering matrix, which quantifies the optical reflection and transmission of a photonic structure, is pivotal for understanding the performance of the structure. In many photonic design tasks, it is also desired to know how the structure’s optical performance changes with respect to design parameters, that is, the scattering matrix’s derivatives (or gradient). Here we address this need. We present a new algorithm for computing scattering matrix derivatives accurately and robustly. In particular, we focus on the computation in semi-analytical methods (such as rigorous coupled-wave analysis). To compute the scattering matrix of a structure, these methods must solve an eigen-decomposition problem. However, when it comes to computing scattering matrix derivatives, differentiating the eigen-decomposition poses significant numerical difficulties. We show that the differentiation of the eigen-decomposition problem can be completely sidestepped, and thereby propose a robust algorithm. To demonstrate its efficacy, we use our algorithm to optimize metasurface structures and reach various optical design goals.

 
more » « less
Award ID(s):
1816041 1717178
NSF-PAR ID:
10203945
Author(s) / Creator(s):
;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
28
Issue:
25
ISSN:
1094-4087; OPEXFF
Page Range / eLocation ID:
Article No. 37773
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The source angle localization problem is studied based on scattering of elastic waves in two dimensions by a phononic array and the exceptional points of its band structure. Exceptional points are complex singularities of a parameterized eigen-spectrum, where two modes coalesce with identical mode shapes. These special points mark the qualitative transitions in the system behavior and have been proposed for sensing applications. The equi-frequency band structures are analyzed with focus on the angle-dependent modal behaviors. At the exceptional points and critical angles, the eigen-modes switch their energy characteristics and symmetry, leading to enhanced sensitivity as the scattering response of the medium is inherently angle-dependent. An artificial neural network is trained with randomly weighted and superposed eigen-modes to achieve deep learning of the angle-dependent dynamics. The trained algorithm can accurately classify the incident angle of an unknown scattering signal, with minimal sidelobe levels and suppressed main lobewidth. The neural network approach shows superior localization performance compared with standard delay-and-sum technique. The proposed application of the phononic array highlights the physical relevance of band topology and eigen-modes to a technological application, adds extra strength to the existing localization methods, and can be easily enhanced with the fast-growing data-driven techniques. 
    more » « less
  2. Throughout many scientific and engineering fields, including control theory, quantum mechanics, advanced dynamics, and network theory, a great many important applications rely on the spectral decomposition of matrices. Traditional methods such as the power iteration method, Jacobi eigenvalue method, and QR decomposition are commonly used to compute the eigenvalues and eigenvectors of a square and symmetric matrix. However, these methods suffer from certain drawbacks: in particular, the power iteration method can only find the leading eigen-pair (i.e., the largest eigenvalue and its corresponding eigenvector), while the Jacobi and QR decomposition methods face significant performance limitations when facing with large scale matrices. Typically, even producing approximate eigenpairs of a general square matrix requires at least O(N^3) time complexity, where N is the number of rows of the matrix. In this work, we exploit the newly developed memristor technology to propose a low-complexity, scalable memristor-based method for deriving a set of dominant eigenvalues and eigenvectors for real symmetric non-negative matrices. The time complexity for our proposed algorithm is O(N^2 /Δ) (where Δ governs the accuracy). We present experimental studies to simulate the memristor-supporting algorithm, with results demonstrating that the average error for our method is within 4%, while its performance is up to 1.78X better than traditional methods. 
    more » « less
  3. Abstract

    Sparse matrix computations are among the most important computational patterns, commonly used in geometry processing, physical simulation, graph algorithms, and other situations where sparse data arises. In many cases, the structure of a sparse matrix is known a priori, but the values may change or depend on inputs to the algorithm. We propose a new methodology for compile‐time specialization of algorithms relying on mixing sparse and dense linear algebra operations, using an extension to the widely‐used open source Eigen package. In contrast to library approaches optimizing individual building blocks of a computation (such as sparse matrix product), we generate reusable sparsity‐specific implementations for a given algorithm, utilizing vector intrinsics and reducing unnecessary scanning through matrix structures. We demonstrate the effectiveness of our technique on a benchmark of artificial expressions to quantitatively evaluate the benefit of our approach over the state‐of‐the‐art library Intel MKL. To further demonstrate the practical applicability of our technique we show that our technique can improve performance, with minimal code changes, for mesh smoothing, mesh parametrization, volumetric deformation, optical flow, and computation of the Laplace operator.

     
    more » « less
  4. Abstract

    Machine learning provides a promising platform for both forward modeling and the inverse design of photonic structures. Relying on a data-driven approach, machine learning is especially appealing for situations when it is not feasible to derive an analytical solution for a complex problem. There has been a great amount of recent interest in constructing machine learning models suitable for different electromagnetic problems. In this work, we adapt a region-specified design approach for the inverse design of multilayered nanoparticles. Given the high computational cost of dataset generation for electromagnetic problems, we specifically investigate the case of a small training dataset, enhanced via random region specification in an inverse convolutional neural network. The trained model is used to design nanoparticles with high absorption levels and different ratios of absorption over scattering. The central design wavelength is shifted across 350–700 nm without re-training. We discuss the implications of wavelength, particle size, and the training dataset size on the performance of the model. Our approach may find interesting applications in the design of multilayer nanoparticles for biological, chemical, and optical applications as well as the design of low-scattering absorbers and antennas.

     
    more » « less
  5. Recent developments in the computational automated design of electromagnetic devices, otherwise known as inverse design, have significantly enhanced the design process for nanophotonic systems. Inverse design can both reduce design time considerably and lead to high-performance, nonintuitive structures that would otherwise have been impossible to develop manually. Despite the successes enjoyed by structure optimization techniques, most approaches leverage electromagnetic solvers that require significant computational resources and suffer from slow convergence and numerical dispersion. Recently, a fast simulation and boundary-based inverse design approach based on boundary integral equations was demonstrated for two-dimensional nanophotonic problems. In this work, we introduce a new full-wave three-dimensional simulation and boundary-based optimization framework for nanophotonic devices also based on boundary integral methods, which achieves high accuracy even at coarse mesh discretizations while only requiring modest computational resources. The approach has been further accelerated by leveraging GPU computing, a sparse block-diagonal preconditioning strategy, and a matrix-free implementation of the discrete adjoint method. As a demonstration, we optimize three different devices: a 1:2 1550 nm power splitter and two nonadiabatic mode-preserving waveguide tapers. To the best of our knowledge, the tapers, which span 40 wavelengths in the silicon material, are the largest silicon photonic waveguiding devices to have been optimized using full-wave 3D solution of Maxwell’s equations. 
    more » « less