Abstract BackgroundIntraoperative 2D quantitative angiography (QA) for intracranial aneurysms (IAs) has accuracy challenges due to the variability of hand injections. Despite the success of singular value decomposition (SVD) algorithms in reducing biases in computed tomography perfusion (CTP), their application in 2D QA has not been extensively explored. This study seeks to bridge this gap by investigating the potential of SVD‐based deconvolution methods in 2D QA, particularly in addressing the variability of injection durations. PurposeBuilding on the identified limitations in QA, the study aims to adapt SVD‐based deconvolution techniques from CTP to QA for IAs. This adaptation seeks to capitalize on the high temporal resolution of QA, despite its two‐dimensional nature, to enhance the consistency and accuracy of hemodynamic parameter assessment. The goal is to develop a method that can reliably assess hemodynamic conditions in IAs, independent of injection variables, for improved neurovascular diagnostics. Materials and methodsThe study included three internal carotid aneurysm (ICA) cases. Virtual angiograms were generated using computational fluid dynamics (CFD) for three physiologically relevant inlet velocities to simulate contrast media injection durations. Time‐density curves (TDCs) were produced for both the inlet and aneurysm dome. Various SVD variants, including standard SVD (sSVD) with and without classical Tikhonov regularization, block‐circulant SVD (bSVD), and oscillation index SVD (oSVD), were applied to virtual angiograms. The method was applied on virtual angiograms to recover the aneurysmal dome impulse response function (IRF) and extract flow related parameters such as Peak Height PHIRF, Area Under the Curve AUCIRF, and Mean transit time MTT. Next, correlations between QA parameters, injection duration, and inlet velocity were assessed for unconvolved and deconvolved data for all SVD methods. Additionally, we performed an in vitro study, to complement our in silico investigation. We generated a 2D DSA using a flow circuit design for a patient‐specific internal carotid artery phantom. The DSA showcases factors like x‐ray artifacts, noise, and patient motion. We evaluated QA parameters for the in vitro phantoms using different SVD variants and established correlations between QA parameters, injection duration, and velocity for unconvolved and deconvolved data. ResultsThe different SVD algorithm variants showed strong correlations between flow and deconvolution‐adjusted QA parameters. Furthermore, we found that SVD can effectively reduce QA parameter variability across various injection durations, enhancing the potential of QA analysis parameters in neurovascular disease diagnosis and treatment. ConclusionImplementing SVD‐based deconvolution techniques in QA analysis can enhance the precision and reliability of neurovascular diagnostics by effectively reducing the impact of injection duration on hemodynamic parameters.
more »
« less
Large-Scale System Identification Using a Randomized SVD
Learning a dynamical system from input/output data is a fundamental task in the control design pipeline. In the partially observed setting there are two components to identification: parameter estimation to learn the Markov parameters, and system realization to obtain a state space model. In both sub-problems it is implicitly assumed that standard numerical algorithms such as the singular value decomposition (SVD) can be easily and reliably computed. When trying to fit a high-dimensional model to data, even computing an SVD may be intractable. In this work we show that an approximate matrix factorization obtained using randomized methods can replace the standard SVD in the realization algorithm while maintaining the finite-sample performance and robustness guarantees of classical methods.
more »
« less
- Award ID(s):
- 2144634
- PAR ID:
- 10390335
- Date Published:
- Journal Name:
- Proceedings of the 2022 American Control Conference (ACC)
- Page Range / eLocation ID:
- 2178 to 2185
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Trans-arterial chemoembolization (TACE) is an important yet variably effective treatment for management of hepatic malignancies. Lack of response can be in part due to inability to assess treatment adequacy in real-time. Gold-standard contrast enhanced computed tomography and magnetic resonance imaging, although effective, suffer from treatment-induced artifacts that prevent early treatment evaluation. Non-contrast ultrasound is a potential solution but has historically been ineffective at detecting treatment response. Here, we propose non-contrast ultrasound with recent perfusion-focused advancements as a tool for immediate evaluation of TACE. We demonstrate initial feasibility in an 11-subject pilot study. Treatment-induced changes in tumor perfusion are detected best when combining adaptive demodulation (AD) and singular value decomposition (SVD) techniques. Using a 0.5 s (300-sample) ensemble size, AD + SVD resulted in a 7.42 dB median decrease in tumor power after TACE compared to only a 0.06 dB median decrease with conventional methods.more » « less
-
The standardized spectral mixture model combines the specificity of a physically based representation of a spectrally mixed pixel with the generality and portability of a spectral index. Earlier studies have used spectrally and geographically diverse collections of broadband and spectroscopic imagery to show that the reflectance of the majority of ice-free landscapes on Earth can be represented as linear mixtures of rock and soil substrates (S), photosynthetic vegetation (V) and dark targets (D) composed of shadow and spectrally absorptive/transmissive materials. However, both broadband and spectroscopic studies of the topology of spectral mixing spaces raise questions about the completeness and generality of the Substrate, Vegetation, Dark (SVD) model for imaging spectrometer data. This study uses a spectrally diverse collection of 40 granules from the EMIT imaging spectrometer to verify the generality and stability of the spectroscopic SVD model and characterize the SVD topology and plane of substrates to assess linearity of spectral mixing. New endmembers for soil and non-photosynthetic vegetation (NPV; N) allow the planar SVD model to be extended to a tetrahedral SVDN model to better accommodate the 3D topology of the mixing space. The SVDN model achieves smaller misfit than the SVD, but does so at the expense of implausible fractions beyond [0, 1]. However, a refined spectroscopic SVD model still achieves small (<0.03) RMS misfit, negligible sensitivity to endmember variability and strongly linear scaling over more than an order of magnitude range of spatial resolution.more » « less
-
Detecting and locating damage information from waves reflected off damage is a common practice in non-destructive structural health monitoring systems. Yet, the transmitted ultrasonic guided waves are affected by the physical and material properties of the structure and are often complicated to model mathematically. This calls for data-driven approaches to model the behaviour of waves, where patterns in wave data due to damage can be learned and distinguished from non-damage data. Recent works have used a popular dictionary learning algorithm, K-SVD, to learn an overcomplete dictionary for waves propagating in a metal plate. However, the domain knowledge is not utilized. This may lead to fruitless results in the case where there are strong patterns in the data that are not of interest to the domain. In this work, instead of treating the K-SVD algorithm as a black box, we create a novel modification by enforcing domain knowledge. In particular, we look at how regularizing the K-SVD algorithm with the one-dimensional wave equation affects the dictionary learned in the simple case of vibrating string. By adding additional non-wave patterns (noise) to the data, we demonstrate that the “wave-informed K-SVD” does not learn patterns which do not obey the wave equation hence learning patterns from data and not the noise.more » « less
-
Modern deep neural networks (DNNs) often require high memory consumption and large computational loads. In order to deploy DNN algorithms efficiently on edge or mobile devices, a series of DNN compression algorithms have been explored, including factorization methods. Factorization methods approximate the weight matrix of a DNN layer with the multiplication of two or multiple low-rank matrices. However, it is hard to measure the ranks of DNN layers during the training process. Previous works mainly induce low-rank through implicit approximations or via costly singular value decomposition (SVD) process on every training step. The former approach usually induces a high accuracy loss while the latter has a low efficiency. In this work, we propose SVD training, the first method to explicitly achieve low-rank DNNs during training without applying SVD on every step. SVD training first decomposes each layer into the form of its full-rank SVD, then performs training directly on the decomposed weights. We add orthogonality regularization to the singular vectors, which ensure the valid form of SVD and avoid gradient vanishing/exploding. Low-rank is encouraged by applying sparsity-inducing regularizers on the singular values of each layer. Singular value pruning is applied at the end to explicitly reach a low-rank model. We empirically show that SVD training can significantly reduce the rank of DNN layers and achieve higher reduction on computation load under the same accuracy, comparing to not only previous factorization methods but also state-of-the-art filter pruning methods.more » « less
An official website of the United States government

