skip to main content

Title: Monophyletic Origin and Divergent Evolution of Animal Telomerase RNA
Abstract Telomerase RNA (TR) is a noncoding RNA essential for the function of telomerase ribonucleoprotein. TRs from vertebrates, fungi, ciliates, and plants exhibit extreme diversity in size, sequence, secondary structure, and biogenesis pathway. However, the evolutionary pathways leading to such unusual diversity among eukaryotic kingdoms remain elusive. Within the metazoan kingdom, the study of TR has been limited to vertebrates and echinoderms. To understand the origin and evolution of TR across the animal kingdom, we employed a phylogeny-guided, structure-based bioinformatics approach to identify 82 novel TRs from eight previously unexplored metazoan phyla, including the basal-branching sponges. Synthetic TRs from two representative species, a hemichordate and a mollusk, reconstitute active telomerase in vitro with their corresponding telomerase reverse transcriptase components, confirming that they are authentic TRs. Comparative analysis shows that three functional domains, template-pseudoknot (T-PK), CR4/5, and box H/ACA, are conserved between vertebrate and the basal metazoan lineages, indicating a monophyletic origin of the animal TRs with a snoRNA-related biogenesis mechanism. Nonetheless, TRs along separate animal lineages evolved with divergent structural elements in the T-PK and CR4/5 domains. For example, TRs from echinoderms and protostomes lack the canonical CR4/5 and have independently evolved functionally equivalent domains with different secondary structures. In more » the T-PK domain, a P1.1 stem common in most metazoan clades defines the template boundary, which is replaced by a P1-defined boundary in vertebrates. This study provides unprecedented insight into the divergent evolution of detailed TR secondary structures across broad metazoan lineages, revealing ancestral and later-diversified elements. « less
Authors:
; ; ;
Editors:
Wittkopp, Patricia
Award ID(s):
1616078
Publication Date:
NSF-PAR ID:
10204012
Journal Name:
Molecular Biology and Evolution
ISSN:
0737-4038
Sponsoring Org:
National Science Foundation
More Like this
  1. Telomerase is essential for maintaining telomere integrity. Although telomerase function is widely conserved, the integral telomerase RNA (TR) that provides a template for telomeric DNA synthesis has diverged dramatically. Nevertheless, TR molecules retain 2 highly conserved structural domains critical for catalysis: a template-proximal pseudoknot (PK) structure and a downstream stem-loop structure. Here we introduce the authentic TR from the plant Arabidopsis thaliana , called AtTR, identified through next-generation sequencing of RNAs copurifying with Arabidopsis TERT. This RNA is distinct from the RNA previously described as the templating telomerase RNA, AtTER1. AtTR is a 268-nt Pol III transcript necessary for telomere maintenance in vivo and sufficient with TERT to reconstitute telomerase activity in vitro. Bioinformatics analysis identified 85 AtTR orthologs from 3 major clades of plants: angiosperms, gymnosperms, and lycophytes. Through phylogenetic comparisons, a secondary structure model conserved among plant TRs was inferred and verified using in vitro and in vivo chemical probing. The conserved plant TR structure contains a template-PK core domain enclosed by a P1 stem and a 3′ long-stem P4/5/6, both of which resemble a corresponding structural element in ciliate and vertebrate TRs. However, the plant TR contains additional stems and linkers within the template-PK core, allowing formore »expansion of PK structure from the simple PK in the smaller ciliate TR during evolution. Thus, the plant TR provides an evolutionary bridge that unites the disparate structures of previously characterized TRs from ciliates and vertebrates.« less
  2. Abstract The enormous sequence heterogeneity of telomerase RNA (TR) subunits has thus far complicated their characterization in a wider phylogenetic range. Our recent finding that land plant TRs are, similarly to known ciliate TRs, transcribed by RNA polymerase III and under the control of the type-3 promoter, allowed us to design a novel strategy to characterize TRs in early diverging Viridiplantae taxa, as well as in ciliates and other Diaphoretickes lineages. Starting with the characterization of the upstream sequence element of the type 3 promoter that is conserved in a number of small nuclear RNAs, and the expected minimum TR template region as search features, we identified candidate TRs in selected Diaphoretickes genomes. Homologous TRs were then used to build covariance models to identify TRs in more distant species. Transcripts of the identified TRs were confirmed by transcriptomic data, RT-PCR and Northern hybridization. A templating role for one of our candidates was validated in Physcomitrium patens. Analysis of secondary structure demonstrated a deep conservation of motifs (pseudoknot and template boundary element) observed in all published TRs. These results elucidate the evolution of the earliest eukaryotic TRs, linking the common origin of TRs across Diaphoretickes, and underlying evolutionary transitions in telomeremore »repeats.« less
  3. Abstract The recent discovery of the bona-fide telomerase RNA (TR) from plants reveals conserved and unique secondary structure elements and the opportunity for new insight into the telomerase RNP. Here we examine how two highly conserved proteins previously implicated in Arabidopsis telomere maintenance, AtPOT1a and AtNAP57 (dyskerin), engage plant telomerase. We report that AtPOT1a associates with Arabidopsis telomerase via interaction with TERT. While loss of AtPOT1a does not impact AtTR stability, the templating domain is more accessible in pot1a mutants, supporting the conclusion that AtPOT1a stimulates telomerase activity but does not facilitate telomerase RNP assembly. We also show, that despite the absence of a canonical H/ACA binding motif within AtTR, dyskerin binds AtTR with high affinity and specificity in vitro via a plant specific three-way junction (TWJ). A core element of the TWJ is the P1a stem, which unites the 5′ and 3′ ends of AtTR. P1a is required for dyskerin-mediated stimulation of telomerase repeat addition processivity in vitro, and for AtTR accumulation and telomerase activity in vivo. The deployment of vertebrate-like accessory proteins and unique RNA structural elements by Arabidopsis telomerase provides a new platform for exploring telomerase biogenesis and evolution.
  4. Larracuente, Amanda (Ed.)
    Abstract The methyltransferase like (METTL) proteins constitute a family of seven-beta-strand methyltransferases with S-adenosyl methionine binding domains that modify DNA, RNA, and proteins. Methylation by METTL proteins contributes to the epigenetic, and in the case of RNA modifications, epitranscriptomic regulation of a variety of biological processes. Despite their functional importance, most investigations of the substrates and functions of METTLs within metazoans have been restricted to model vertebrate taxa. In the present work, we explore the evolutionary mechanisms driving the diversification and functional differentiation of 33 individual METTL proteins across Metazoa. Our results show that METTLs are nearly ubiquitous across the animal kingdom, with most having arisen early in metazoan evolution (i.e., occur in basal metazoan phyla). Individual METTL lineages each originated from single independent ancestors, constituting monophyletic clades, which suggests that each METTL was subject to strong selective constraints driving its structural and/or functional specialization. Interestingly, a similar process did not extend to the differentiation of nucleoside-modifying and protein-modifying METTLs (i.e., each METTL type did not form a unique monophyletic clade). The members of these two types of METTLs also exhibited differences in their rates of evolution. Overall, we provide evidence that the long-term evolution of METTL family members wasmore »driven by strong purifying selection, which in combination with adaptive selection episodes, led to the functional specialization of individual METTL lineages. This work contributes useful information regarding the evolution of a gene family that fulfills a variety of epigenetic functions, and can have profound influences on molecular processes and phenotypic traits.« less
  5. Taylor, John W. (Ed.)
    ABSTRACT Mycoviruses are widespread and purportedly common throughout the fungal kingdom, although most are known from hosts in the two most recently diverged phyla, Ascomycota and Basidiomycota, together called Dikarya. To augment our knowledge of mycovirus prevalence and diversity in underexplored fungi, we conducted a large-scale survey of fungi in the earlier-diverging lineages, using both culture-based and transcriptome-mining approaches to search for RNA viruses. In total, 21.6% of 333 isolates were positive for RNA mycoviruses. This is a greater proportion than expected based on previous taxonomically broad mycovirus surveys and is suggestive of a strong phylogenetic component to mycoviral infection. Our newly found viral sequences are diverse, composed of double-stranded RNA, positive-sense single-stranded RNA (ssRNA), and negative-sense ssRNA genomes and include novel lineages lacking representation in the public databases. These identified viruses could be classified into 2 orders, 5 families, and 5 genera; however, half of the viruses remain taxonomically unassigned. Further, we identified a lineage of virus-like sequences in the genomes of members of Phycomycetaceae and Mortierellales that appear to be novel genes derived from integration of a viral RNA-dependent RNA polymerase gene. The two screening methods largely agreed in their detection of viruses; thus, we suggest that themore »culture-based assay is a cost-effective means to quickly assess whether a laboratory culture is virally infected. This study used culture collections and publicly available transcriptomes to demonstrate that mycoviruses are abundant in laboratory cultures of early-diverging fungal lineages. The function and diversity of mycoviruses found here will help guide future studies into mycovirus origins and ecological functions. IMPORTANCE Viruses are key drivers of evolution and ecosystem function and are increasingly recognized as symbionts of fungi. Fungi in early-diverging lineages are widespread, ecologically important, and comprise the majority of the phylogenetic diversity of the kingdom. Viruses infecting early-diverging lineages of fungi have been almost entirely unstudied. In this study, we screened fungi for viruses by two alternative approaches: a classic culture-based method and by transcriptome-mining. The results of our large-scale survey demonstrate that early-diverging lineages have higher infection rates than have been previously reported in other fungal taxa and that laboratory strains worldwide are host to infections, the implications of which are unknown. The function and diversity of mycoviruses found in these basal fungal lineages will help guide future studies into mycovirus origins and their evolutionary ramifications and ecological impacts.« less