- Publication Date:
- NSF-PAR ID:
- 10254028
- Journal Name:
- Nucleic Acids Research
- ISSN:
- 0305-1048
- Sponsoring Org:
- National Science Foundation
More Like this
-
Telomerase is essential for maintaining telomere integrity. Although telomerase function is widely conserved, the integral telomerase RNA (TR) that provides a template for telomeric DNA synthesis has diverged dramatically. Nevertheless, TR molecules retain 2 highly conserved structural domains critical for catalysis: a template-proximal pseudoknot (PK) structure and a downstream stem-loop structure. Here we introduce the authentic TR from the plant Arabidopsis thaliana , called AtTR, identified through next-generation sequencing of RNAs copurifying with Arabidopsis TERT. This RNA is distinct from the RNA previously described as the templating telomerase RNA, AtTER1. AtTR is a 268-nt Pol III transcript necessary for telomere maintenance in vivo and sufficient with TERT to reconstitute telomerase activity in vitro. Bioinformatics analysis identified 85 AtTR orthologs from 3 major clades of plants: angiosperms, gymnosperms, and lycophytes. Through phylogenetic comparisons, a secondary structure model conserved among plant TRs was inferred and verified using in vitro and in vivo chemical probing. The conserved plant TR structure contains a template-PK core domain enclosed by a P1 stem and a 3′ long-stem P4/5/6, both of which resemble a corresponding structural element in ciliate and vertebrate TRs. However, the plant TR contains additional stems and linkers within the template-PK core, allowing formore »
-
Abstract In contrast to the catalytic subunit of telomerase, its RNA subunit (TR) is highly divergent in size, sequence and biogenesis pathways across eukaryotes. Current views on TR evolution assume a common origin of TRs transcribed with RNA polymerase II in Opisthokonta (the supergroup including Animalia and Fungi) and Trypanosomida on one hand, and TRs transcribed with RNA polymerase III under the control of type 3 promoter, found in TSAR and Archaeplastida supergroups (including e.g. ciliates and Viridiplantae taxa, respectively). Here, we focus on unknown TRs in one of the largest Animalia order - Hymenoptera (Arthropoda) with more than 300 available representative genomes. Using a combination of bioinformatic and experimental approaches, we identify their TRs. In contrast to the presumed type of TRs (H/ACA box snoRNAs transcribed with RNA Polymerase II) corresponding to their phylogenetic position, we find here short TRs of the snRNA type, likely transcribed with RNA polymerase III under the control of the type 3 promoter. The newly described insect TRs thus question the hitherto assumed monophyletic origin of TRs across Animalia and point to an evolutionary switch in TR type and biogenesis that was associated with the divergence of Arthropods.
-
Wittkopp, Patricia (Ed.)Abstract Telomerase RNA (TR) is a noncoding RNA essential for the function of telomerase ribonucleoprotein. TRs from vertebrates, fungi, ciliates, and plants exhibit extreme diversity in size, sequence, secondary structure, and biogenesis pathway. However, the evolutionary pathways leading to such unusual diversity among eukaryotic kingdoms remain elusive. Within the metazoan kingdom, the study of TR has been limited to vertebrates and echinoderms. To understand the origin and evolution of TR across the animal kingdom, we employed a phylogeny-guided, structure-based bioinformatics approach to identify 82 novel TRs from eight previously unexplored metazoan phyla, including the basal-branching sponges. Synthetic TRs from two representative species, a hemichordate and a mollusk, reconstitute active telomerase in vitro with their corresponding telomerase reverse transcriptase components, confirming that they are authentic TRs. Comparative analysis shows that three functional domains, template-pseudoknot (T-PK), CR4/5, and box H/ACA, are conserved between vertebrate and the basal metazoan lineages, indicating a monophyletic origin of the animal TRs with a snoRNA-related biogenesis mechanism. Nonetheless, TRs along separate animal lineages evolved with divergent structural elements in the T-PK and CR4/5 domains. For example, TRs from echinoderms and protostomes lack the canonical CR4/5 and have independently evolved functionally equivalent domains with different secondary structures. Inmore »
-
Faust, Karoline (Ed.)ABSTRACT Much of our knowledge of bacterial transcription initiation has been derived from studying the promoters of Escherichia coli and Bacillus subtilis . Given the expansive diversity across the bacterial phylogeny, it is unclear how much of this knowledge can be applied to other organisms. Here, we report on bioinformatic analyses of promoter sequences of the primary σ factor (σ 70 ) by leveraging publicly available transcription start site (TSS) sequencing data sets for nine bacterial species spanning five phyla. This analysis identifies previously unreported differences in the −35 and −10 elements of σ 70 -dependent promoters in several groups of bacteria. We found that Actinobacteria and Betaproteobacteria σ 70 -dependent promoters lack the TTG triad in their −35 element, which is predicted to be conserved across the bacterial phyla. In addition, the majority of the Alphaproteobacteria σ 70 -dependent promoters analyzed lacked the thymine at position −7 that is highly conserved in other phyla. Bioinformatic examination of the Alphaproteobacteria σ 70 -dependent promoters identifies a significant overrepresentation of essential genes and ones encoding proteins with common cellular functions downstream of promoters containing an A, C, or G at position −7. We propose that transcription of many σ 70 -dependentmore »
-
Storz, Gisela (Ed.)ABSTRACT Mutations in regulatory mechanisms that control gene expression contribute to phenotypic diversity and thus facilitate the adaptation of microbes and other organisms to new niches. Comparative genomics can be used to infer rewiring of regulatory architecture based on large effect mutations like loss or acquisition of transcription factors but may be insufficient to identify small changes in noncoding, intergenic DNA sequence of regulatory elements that drive phenotypic divergence. In human-derived Vibrio cholerae , the response to distinct chemical cues triggers production of multiple transcription factors that can regulate the type VI secretion system (T6), a broadly distributed weapon for interbacterial competition. However, to date, the signaling network remains poorly understood because no regulatory element has been identified for the major T6 locus. Here we identify a conserved cis -acting single nucleotide polymorphism (SNP) controlling T6 transcription and activity. Sequence alignment of the T6 regulatory region from diverse V. cholerae strains revealed conservation of the SNP that we rewired to interconvert V. cholerae T6 activity between chitin-inducible and constitutive states. This study supports a model of pathogen evolution through a noncoding cis -regulatory mutation and preexisting, active transcription factors that confers a different fitness advantage to tightly regulated strains insidemore »