Abstract We report upper limits on the Epoch of Reionization 21 cm power spectrum at redshifts 7.9 and 10.4 with 18 nights of data (∼36 hr of integration) from Phase I of the Hydrogen Epoch of Reionization Array (HERA). The Phase I data show evidence for systematics that can be largely suppressed with systematic models down to a dynamic range of ∼10 9 with respect to the peak foreground power. This yields a 95% confidence upper limit on the 21 cm power spectrum of Δ 21 2 ≤ ( 30.76 ) 2 mK 2 at k = 0.192 h Mpc −1 at z = 7.9, and also Δ 21 2 ≤ ( 95.74 ) 2 mK 2 at k = 0.256 h Mpc −1 at z = 10.4. At z = 7.9, these limits are the most sensitive to date by over an order of magnitude. While we find evidence for residual systematics at low line-of-sight Fourier k ∥ modes, at high k ∥ modes we find our data to be largely consistent with thermal noise, an indicator that the system could benefit from deeper integrations. The observed systematics could be due to radio frequency interference, cable subreflections, or residual instrumental cross-coupling, and warrant further study. This analysis emphasizes algorithms that have minimal inherent signal loss, although we do perform a careful accounting in a companion paper of the small forms of loss or bias associated with the pipeline. Overall, these results are a promising first step in the development of a tuned, instrument-specific analysis pipeline for HERA, particularly as Phase II construction is completed en route to reaching the full sensitivity of the experiment.
more »
« less
Foreground modelling via Gaussian process regression: an application to HERA data
ABSTRACT The key challenge in the observation of the redshifted 21-cm signal from cosmic reionization is its separation from the much brighter foreground emission. Such separation relies on the different spectral properties of the two components, although, in real life, the foreground intrinsic spectrum is often corrupted by the instrumental response, inducing systematic effects that can further jeopardize the measurement of the 21-cm signal. In this paper, we use Gaussian Process Regression to model both foreground emission and instrumental systematics in ∼2 h of data from the Hydrogen Epoch of Reionization Array. We find that a simple co-variance model with three components matches the data well, giving a residual power spectrum with white noise properties. These consist of an ‘intrinsic’ and instrumentally corrupted component with a coherence scale of 20 and 2.4 MHz, respectively (dominating the line-of-sight power spectrum over scales k∥ ≤ 0.2 h cMpc−1) and a baseline-dependent periodic signal with a period of ∼1 MHz (dominating over k∥ ∼ 0.4–0.8 h cMpc−1), which should be distinguishable from the 21-cm Epoch of Reionization signal whose typical coherence scale is ∼0.8 MHz.
more »
« less
- Award ID(s):
- 1836019
- PAR ID:
- 10204068
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 495
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 2813 to 2826
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)ABSTRACT We quantify the effect of radio frequency interference (RFI) on measurements of the 21-cm power spectrum during the Epoch of Reionization (EoR). Specifically, we investigate how the frequency structure of RFI source emission generates contamination in higher order wave modes, which is much more problematic than smooth-spectrum foreground sources. Using a relatively optimistic EoR model, we find that even a single relatively dim RFI source can overwhelm the EoR power spectrum signal of $$\sim 10\, {\rm mK}^2$$ for modes $$0.1 \ \lt k \lt 2 \, h\, {\rm Mpc}^{-1}$$. If the total apparent RFI flux density in the final power spectrum integration is kept below 1 mJy, an EoR signal resembling this optimistic model should be detectable for modes $$k \lt 0.9\, h\, {\rm Mpc}^{-1}$$, given no other systematic contaminants and an error tolerance as high as 10 per cent. More pessimistic models will be more restrictive. These results emphasize the need for highly effective RFI mitigation strategies for telescopes used to search for the EoR.more » « less
-
null (Ed.)ABSTRACT The 21 cm hyperfine transition of neutral hydrogen offers a promising probe of the large-scale structure of the universe before and during the Epoch of Reionization (EoR), when the first ionizing sources formed. Bright radio emission from foreground sources remains the biggest obstacle to detecting the faint 21 cm signal. However, the expected smoothness of foreground power leaves a clean window in Fourier space where the EoR signal can potentially be seen over thermal noise. Though the boundary of this window is well defined in principle, spectral structure in foreground sources, instrumental chromaticity, and choice of spectral weighting in analysis all affect how much foreground power spills over into the EoR window. In this paper, we run a suite of numerical simulations of wide-field visibility measurements, with a variety of diffuse foreground models and instrument configurations, and measure the extent of contaminated Fourier modes in the EoR window using a delay-transform approach to estimate power spectra. We also test these effects with a model of the Hydrogen Epoch of Reionization Array (HERA) antenna beam generated from electromagnetic simulations, to take into account further chromatic effects in the real instrument. We find that foreground power spillover is dominated by the so-called pitchfork effect, in which diffuse foreground power is brightened near the horizon due to the shortening of baselines. As a result, the extent of contaminated modes in the EoR window is largely constant over time, except when the Galaxy is near the pointing centre.more » « less
-
ABSTRACT We present a comprehensive simulation-based study of the bayeseor code for 21 cm power spectrum recovery when analytically marginalizing over foreground parameters. To account for covariance between the 21 cm signal and contaminating foreground emission, bayeseor jointly constructs models for both signals within a Bayesian framework. Due to computational constraints, the forward model is constructed using a restricted field of view (FoV) in the image domain. When the only Epoch of Reionization contaminants are noise and foregrounds, we demonstrate that bayeseor can accurately recover the 21 cm power spectrum when the component of sky emission outside this forward-modelled region is downweighted by the beam at the level of the dynamic range between the foreground and 21 cm signals. However, when all-sky foreground emission is included along with a realistic instrument primary beam with sidelobes above this threshold extending to the horizon, the recovered power spectrum is contaminated by unmodelled sky emission outside the restricted FoV model. Expanding the combined cosmological and foreground model to cover the whole sky is computationally prohibitive. To address this, we present a modified version of bayeseor that allows for an all-sky foreground model, while the modelled 21 cm signal remains only within the primary FoV of the telescope. With this modification, it will be feasible to run an all-sky bayeseor analysis on a sizeable compute cluster. We also discuss several future directions for further reducing the need to model all-sky foregrounds, including wide-field foreground subtraction, an image-domain likelihood utilizing a tapering function, and instrument primary beam design.more » « less
-
ABSTRACT We present an analysis of Epoch of Reionization (EoR) data from Phase II of the Murchison Widefield Array using the simpleds delay spectrum pipeline. Prior work analysed the same observations using the fhd/εppsilon imaging pipeline, and so the present analysis represents the first time that both principal types of 21 cm cosmology power spectrum estimation approaches have been applied to the same data set. Our limits on the 21 cm power spectrum amplitude span a range in k space of $$|k| \lt 1 \, h_{100}\, {\rm Mpc}^{-1}$$ with a lowest measurement of Δ2(k) ≤ 4.58 × 103 mK2 at $$k = 0.190\, h_{100}\, \rm {Mpc}^{-1}$$ and z = 7.14. In order to achieve these limits, we need to mitigate a previously unidentified common mode systematic in the data set. If not accounted for, this systematic introduces an overall negative bias that can make foreground contaminated measurements appear as stringent, noise-limited constraints on the 21 cm signal amplitude. The identification of this systematic highlights the risk in modelling systematics as positive-definite contributions to the power spectrum and in ‘conservatively’ interpreting all measurements as upper limits.more » « less
An official website of the United States government

