skip to main content

Title: Quantifying EoR delay spectrum contamination from diffuse radio emission
ABSTRACT The 21 cm hyperfine transition of neutral hydrogen offers a promising probe of the large-scale structure of the universe before and during the Epoch of Reionization (EoR), when the first ionizing sources formed. Bright radio emission from foreground sources remains the biggest obstacle to detecting the faint 21 cm signal. However, the expected smoothness of foreground power leaves a clean window in Fourier space where the EoR signal can potentially be seen over thermal noise. Though the boundary of this window is well defined in principle, spectral structure in foreground sources, instrumental chromaticity, and choice of spectral weighting in analysis all affect how much foreground power spills over into the EoR window. In this paper, we run a suite of numerical simulations of wide-field visibility measurements, with a variety of diffuse foreground models and instrument configurations, and measure the extent of contaminated Fourier modes in the EoR window using a delay-transform approach to estimate power spectra. We also test these effects with a model of the Hydrogen Epoch of Reionization Array (HERA) antenna beam generated from electromagnetic simulations, to take into account further chromatic effects in the real instrument. We find that foreground power spillover is dominated by the so-called pitchfork more » effect, in which diffuse foreground power is brightened near the horizon due to the shortening of baselines. As a result, the extent of contaminated modes in the EoR window is largely constant over time, except when the Galaxy is near the pointing centre. « less
Authors:
; ; ; ; ;
Award ID(s):
1836019
Publication Date:
NSF-PAR ID:
10204069
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
494
Issue:
3
Page Range or eLocation-ID:
3712 to 3727
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Measurements of the one-point probability distribution function and higher-order moments (variance, skewness, and kurtosis) of the high-redshift 21-cm fluctuations are among the most direct statistical probes of the non-Gaussian nature of structure formation and evolution during re-ionization. However, contamination from astrophysical foregrounds and instrument systematics pose significant challenges in measuring these statistics in real observations. In this work, we use forward modelling to investigate the feasibility of measuring 21-cm one-point statistics through a foreground avoidance strategy. Leveraging the characteristic wedge-shape of the foregrounds in k-space, we apply a wedge-cut filtre that removes the foreground contaminated modes from a mock data set based on the Hydrogen Epoch of Re-ionization Array (HERA) instrument, and measure the one-point statistics from the image-space representation of the remaining non-contaminated modes. We experiment with varying degrees of wedge-cutting over different frequency bandwidths and find that the centre of the band is the least susceptible to bias from wedge-cutting. Based on this finding, we introduce a rolling filtre method that allows reconstruction of an optimal wedge-cut 21-cm intensity map over the full bandwidth using outputs from wedge-cutting over multiple sub-bands. We perform Monte Carlo simulations to show that HERA should be able to measure the risemore »in skewness and kurtosis near the end of re-ionization with the rolling wedge-cut method if foreground leakage from the Fourier transform window function can be controlled.

    « less
  2. ABSTRACT The 21 cm transition from neutral hydrogen promises to be the best observational probe of the epoch of reionization (EoR). The main difficulty in measuring the 21 cm signal is the presence of bright foregrounds that require very accurate interferometric calibration. Closure quantities may circumvent the calibration requirements but may be, however, affected by direction-dependent effects, particularly antenna primary beam responses. This work investigates the impact of antenna primary beams affected by mutual coupling on the closure phase and its power spectrum. Our simulations show that primary beams affected by mutual coupling lead to a leakage of foreground power into the EoR window, which can be up to ∼104 times higher than the case where no mutual coupling is considered. This leakage is, however, essentially confined at k < 0.3 h Mpc−1 for triads that include 29 m baselines. The leakage magnitude is more pronounced when bright foregrounds appear in the antenna sidelobes, as expected. Finally, we find that triads that include mutual coupling beams different from each other have power spectra similar to triads that include the same type of mutual coupling beam, indicating that beam-to-beam variation within triads (or visibility pairs) is not the major source of foreground leakage in the EoR window.
  3. Abstract The detection of the Epoch of Reionization (EoR) delay power spectrum using a ”foreground avoidance method” highly depends on the instrument chromaticity. The systematic effects induced by the radio-telescope spread the foreground signal in the delay domain, which contaminates the EoR window theoretically observable. Applied to the Hydrogen Epoch of Reionization Array (HERA), this paper combines detailed electromagnetic and electrical simulations in order to model the chromatic effects of the instrument, and quantify its frequency and time responses. In particular, the effects of the analogue receiver, transmission cables, and mutual coupling are included. These simulations are able to accurately predict the intensity of the reflections occurring in the 150-m cable which links the antenna to the back-end. They also show that electromagnetic waves can propagate from one dish to another one through large sections of the array due to mutual coupling. The simulated system time response is attenuated by a factor 104 after a characteristic delay which depends on the size of the array and on the antenna position. Ultimately, the system response is attenuated by a factor 105 after 1400 ns because of the reflections in the cable, which corresponds to characterizable k∥-modes above 0.7 $h\,\,\rm {Mpc}^{-1}$ at 150 MHz.more »Thus, this new study shows that the detection of the EoR signal with HERA Phase I will be more challenging than expected. On the other hand, it improves our understanding of the telescope, which is essential to mitigate the instrument chromaticity.« less
  4. Abstract We report upper limits on the Epoch of Reionization 21 cm power spectrum at redshifts 7.9 and 10.4 with 18 nights of data (∼36 hr of integration) from Phase I of the Hydrogen Epoch of Reionization Array (HERA). The Phase I data show evidence for systematics that can be largely suppressed with systematic models down to a dynamic range of ∼10 9 with respect to the peak foreground power. This yields a 95% confidence upper limit on the 21 cm power spectrum of Δ 21 2 ≤ ( 30.76 ) 2 mK 2 at k = 0.192 h Mpc −1 at z = 7.9, and also Δ 21 2 ≤ ( 95.74 ) 2 mK 2 at k = 0.256 h Mpc −1 at z = 10.4. At z = 7.9, these limits are the most sensitive to date by over an order of magnitude. While we find evidence for residual systematics at low line-of-sight Fourier k ∥ modes, at high k ∥ modes we find our data to be largely consistent with thermal noise, an indicator that the system could benefit from deeper integrations. The observed systematics could be due to radio frequency interference, cable subreflections, or residualmore »instrumental cross-coupling, and warrant further study. This analysis emphasizes algorithms that have minimal inherent signal loss, although we do perform a careful accounting in a companion paper of the small forms of loss or bias associated with the pipeline. Overall, these results are a promising first step in the development of a tuned, instrument-specific analysis pipeline for HERA, particularly as Phase II construction is completed en route to reaching the full sensitivity of the experiment.« less
  5. ABSTRACT We quantify the effect of radio frequency interference (RFI) on measurements of the 21-cm power spectrum during the Epoch of Reionization (EoR). Specifically, we investigate how the frequency structure of RFI source emission generates contamination in higher order wave modes, which is much more problematic than smooth-spectrum foreground sources. Using a relatively optimistic EoR model, we find that even a single relatively dim RFI source can overwhelm the EoR power spectrum signal of $\sim 10\, {\rm mK}^2$ for modes $0.1 \ \lt k \lt 2 \, h\, {\rm Mpc}^{-1}$. If the total apparent RFI flux density in the final power spectrum integration is kept below 1 mJy, an EoR signal resembling this optimistic model should be detectable for modes $k \lt 0.9\, h\, {\rm Mpc}^{-1}$, given no other systematic contaminants and an error tolerance as high as 10 per cent. More pessimistic models will be more restrictive. These results emphasize the need for highly effective RFI mitigation strategies for telescopes used to search for the EoR.