Computational thinking (CT) involves breaking a problem into smaller components and solving it using algorithmic thinking and abstraction. CT is no longer exclusively for computer scientists but for everyone. While CT does not necessarily require programming, learning programming to enhance CT skills at a young age can help shape the next generation of children with knowledge that can help them succeed in our technological world. In order to produce teachers who are able to incorporate programming and CT into their future classrooms, we created an introductory Computer Science course (CS0) targeting future K-8 STEM teachers yet open to any student to enroll and learn computer science. We used a mixed-methods approach, examining both quantitative and qualitative data based on self-reported surveys, classroom artifacts, and focus groups from four semesters of data. We found that after taking the course, students’ self-efficacy in CT increased and while education students initially had lower confidence in their computing abilities than computer science students in the course, by the end of the semester there were no differences in their perceived and actual coding abilities when compared with computer science students. Furthermore, education students had many ideas on how to incorporate similar projects into their own future classrooms.
more »
« less
Can Students' Spatial Skills Predict Their Programming Abilities?
Spatial abilities have been shown to have high predictability in students’ success in STEM related fields. Studies have also shown that there is a correlation between students’ spatial skills and programming abilities, but it is unknown how well students’ prior spatial abilities can predict students’ introductory programming abilities at the end of the semester. During this study we used a multinomal logistic regression to create a predictive model to predict students’ introductory programming abilities at the end of the semester. The highest model accuracy (64.6%) was obtained when accounting for students’ prior programming abilities, prior spatial skills, socioeconomic status, and three factors regarding students’ attitudes towards computing. It was also found that when looking at the predictability of each individual variable, students’ prior spatial ability had the highest predictability (56.6% accuracy) when compared to all other variables.
more »
« less
- PAR ID:
- 10204114
- Date Published:
- Journal Name:
- ITiCSE 2020
- Page Range / eLocation ID:
- 446 to 451
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Industry leaders emphasize that engineering students' technical communication and writing skills must be improved. Despite various institutional efforts, which include technical communication courses or engineering design projects aimed at enhancing students’ communication abilities, many believe there has been only slow improvement in this area. There has also been a dearth of longitudinal studies that examine the development of engineering students’ technical communication competencies from undergraduate to industry. This paper aims to contribute to this area through the creation of a rubric that specifically examines the writing competencies and technical communication ability of engineering students. This paper is part of a larger, NSF-funded research study that examines the quality of students’ written and oral communication skills and seeks to understand their relationship to the students’ spatial abilities. First-year engineering students in their second semester at a large R1 Midwestern university were examined. Students were tasked with creating a written report responding to a set of questions that asked about their team-based engineering design project completed in their first semester. As this occurred months prior, this non-graded report became a reflection on their experience and innate abilities. While low stakes, it mimicked a more authentic writing experience students encounter in industry. Students' responses were examined collaboratively by an interdisciplinary team which created a rubric through an iterative process. This rubric was distributed to the interdisciplinary team and outside evaluators composed of individuals in industry and engineering faculty. An inter-rater reliability analysis was conducted to examine levels of agreement between the interdisciplinary team and outside evaluators, and implications of this inter-rater reliability score and the process of rubric application were documented. Results of this paper include details on the development of a rubric that examine students’ technical communication and writing skills. Traditional rubrics utilized by engineering faculty usually address an entire project for engineering students, which includes students' content knowledge, writing capabilities, and the requirements of the project. Such rubrics are often used to provide feedback to students and evaluation in the form of grades. The narrower focus of the rubric being developed here can provide insights into communication and writing competencies of engineering students. Scores secured through the use of this rubric will aid in the research study’s goal of finding correlations between engineering students’ communication skills and spatial abilities (assessed outside of this current effort). Spatial ability has been well-documented as an effective indicator of success in STEM, and interventions have been developed to support development in students with weaker spatial skills. 23, 24This has prompted this research to explore links between spatial skills and communication abilities, as validated spatial interventions may help improve communication abilities. These current results may also provide unique insights into first-year engineering students’ writing competencies when reporting on a more authentic (non-graded) engineering task. Such information may be useful in eventually shaping guidance of students’ communication instruction in hopes of better preparing them for industry; this is the focus of a planned future research study.more » « less
-
This complete research paper describes the impact of a modeling intervention on first-year engineering students’ modeling skills in an introductory computer programming course. Five sections of the first-year engineering introductory programming course at a private, STEM+Business institution were revised to center around modeling concepts. These five sections made up the experimental group for this study. The comparison group consisted of four sections of the course that were not revised. Students in all these sections were given two different versions of a modeling problem two times in the semester to test their progress in gaining modeling skills. Each version required two submissions – a written solution and a coded solution. The assessment of these four submissions based on the three established dimensions of modeling were quantitatively analyzed in this study. The three dimensions within mathematical modeling that were the focus of this study were mathematical model complexity, modifiability, and reusability. Mathematical model complexity is being able to address the complexity of the problem. Modifiability addresses the generalizability of the model solution. Reusability is showing an understanding of the problem and the user. Statistical analysis showed that students in the experimental group had more gains in their demonstrated modeling abilities across all three dimensions than the students in the comparison group. This study demonstrated that intentional and explicit instructional strategies targeting model development resulted in greater gains in students’ demonstrated modeling skills and both their written and coded solutions to a complex modeling problem.more » « less
-
Students (like all people) have elements of both growth and fixed mindsets. We studied shifts in both types of student mindsets over three one-semester courses. We found no significant change in students’ growth mindset at the beginning of the semester compared to the end of the semester. However, students’ fixed mindsets showed a statistically significant increase from the beginning of the semester to the end of the semester. Two multilevel models were used to understand why students’ fixed mindsets may have increased 1) personal sourcesmastery goal, performance goal, and internal recognition, and 2) situational sourcesclassroom goal orientations and external recognition. Students’ endorsement of a performance goal orientation, which focuses on demonstrating competence and managing others’ perception of their abilities, increased their fixed mindset views at the end of the semester. In the model focused on situational sources, we found that students’ fixed mindset increased when they perceived their classroom environment endorsed a performance-approach goal structure and by receiving external recognition. When comparing both models, students’ fixed mindset increase was largely explained by classroom environmental sources. Specifically, students’ fixed mindsets increased when they perceived that their classroom environment valued a demonstration of competence (i.e., classroom performance-approach). Being recognized as an engineer by peers and instructors also increased students’ fixed views of their abilities. Conversely, one situational source was found to decrease students’ fixed mindset views, i.e., a classroom environment that promotes mastery goals. Our study points to an apparent and crucial role engineering classroom environments have in promoting certain mindsets. The study concludes with one pedagogical strategy that may help mitigate the inadvertent promotion of a fixed mindset, e.g., a mastery learning pedagogical intervention.more » « less
-
Sketching is a valuable skill in engineering for representing information, developing design ideas, and communicating technical and abstract information. It is an important means of developing spatial abilities which are predictive of success in STEM fields. While existing spatial ability tests are predictive of engineering visualization skills, they do not allow students to develop drawing skills through spatial exercises. The Object Assembly Sketching test examines sketching skills with object assembly tasks using mental imagery and mental rotation. This study focuses on the development and pilot testing of a new sketching skills test using object assembly exercises. We piloted the test in two sections of an undergraduate mechanical engineering design course. Inter-rater reliability of two raters scoring students sketches on eight criteria was acceptable across exercises, but low across criteria. Students scored highest on Representation Accuracy, Scale, and Symmetry, and exhibited complex understanding of perspective sketching. We intend to revise the rubric to score for aesthetics and make instructions more precise.more » « less
An official website of the United States government

