skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Power analyses for moderator effects with (non)random slopes in cluster randomized trials
Researchers often apply moderation analyses to examine whether the effects of an intervention differ conditional on individual or cluster moderator variables such as gender, pretest, or school size. This study develops formulas for power analyses to detect moderator effects in two-level cluster randomized trials (CRTs) using linear models. We derive the formulas for estimating statistical power, minimum detectable effect size difference and 95% confidence intervals for cluster- and individual-level moderators. Our framework accommodates binary or continuous moderators, designs with or without covariates, and effects of individual-level moderators that vary randomly or nonrandomly across clusters. A small Monte Carlo simulation confirms the accuracy of our formulas. We also compare power between main effect analysis and moderation analysis, discuss the effects of mis-specification of the moderator slope (randomly vs. non-randomly varying), and conclude with directions for future research. We provide software for conducting a power analysis of moderator effects in CRTs.  more » « less
Award ID(s):
1913563
PAR ID:
10204143
Author(s) / Creator(s):
Date Published:
Journal Name:
Methodology
ISSN:
1614-2241
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cluster randomized trials (CRTs) are commonly used to evaluate the causal effects of educational interventions, where the entire clusters (e.g., schools) are randomly assigned to treatment or control conditions. This study introduces statistical methods for designing and analyzing two-level (e.g., students nested within schools) and three-level (e.g., students nested within classrooms nested within schools) CRTs. Specifically, we utilize hierarchical linear models (HLMs) to account for the dependency of the intervention participants within the same clusters, estimating the average treatment effects (ATEs) of educational interventions and other effects of interest (e.g., moderator and mediator effects). We demonstrate methods and tools for sample size planning and statistical power analysis. Additionally, we discuss common challenges and potential solutions in the design and analysis phases, including the effects of omitting one level of clustering, non-compliance, threats to external validity, and cost-effectiveness of the intervention. We conclude with some practical suggestions for CRT design and analysis, along with recommendations for further readings. 
    more » « less
  2. Past research has demonstrated that treatment effects frequently vary across sites (e.g., schools) and that such variation can be explained by site-level or individual-level variables (e.g., school size or gender). The purpose of this study is to develop a statistical framework and tools for the effective and efficient design of multisite randomized trials (MRTs) probing moderated treatment effects. The framework considers three core facets of such designs: (a) Level 1 and Level 2 moderators, (b) random and nonrandomly varying slopes (coefficients) of the treatment variable and its interaction terms with the moderators, and (c) binary and continuous moderators. We validate the formulas for calculating statistical power and the minimum detectable effect size difference with simulations, probe its sensitivity to model assumptions, execute the formulas in accessible software, demonstrate an application, and provide suggestions in designing MRTs probing moderated treatment effects. 
    more » « less
  3. Online volunteers are an uncompensated yet valuable labor force for many social platforms. For example, volunteer content moderators perform a vast amount of labor to maintain online communities. However, as social platforms like Reddit favor revenue generation and user engagement, moderators are under-supported to manage the expansion of online communities. To preserve these online communities, developers and researchers of social platforms must account for and support as much of this labor as possible. In this paper, we quantitatively characterize the publicly visible and invisible actions taken by moderators on Reddit, using a unique dataset of private moderator logs for 126 subreddits and over 900 moderators. Our analysis of this dataset reveals the heterogeneity of moderation work across both communities and moderators. Moreover, we find that analyzing only visible work – the dominant way that moderation work has been studied thus far – drastically underestimates the amount of human moderation labor on a subreddit. We discuss the implications of our results on content moderation research and social platforms. 
    more » « less
  4. This design project arose with the purpose to intervene within the current landscape of content moderation. Our team’s primary focus is community moderators, specifically volunteer moderators for online community spaces. Community moderators play a key role in up-keeping the guidelines and culture of online community spaces, as well as managing and protecting community members against harmful content online. Yet, community moderators notably lack the official resources and training that their commercial moderator counterparts have. To address this, we present ModeratorHub, a knowledge sharing platform that focuses on community moderation. In our current design stage, we focused 2 features: (1) moderation case documentation and (2) moderation case sharing. These are our team’s initial building blocks of a larger intervention aimed to support moderators and promote social support and collaboration among end users of online community ecosystems. 
    more » « less
  5. As content moderation becomes a central aspect of all social media platforms and online communities, interest has grown in how to make moderation decisions contestable. On social media platforms where individual communities moderate their own activities, the responsibility to address user appeals falls on volunteers from within the community. While there is a growing body of work devoted to understanding and supporting the volunteer moderators' workload, little is known about their practice of handling user appeals. Through a collaborative and iterative design process with Reddit moderators, we found that moderators spend considerable effort in investigating user ban appeals and desired to directly engage with users and retain their agency over each decision. To fulfill their needs, we designed and built AppealMod, a system that induces friction in the appeals process by asking users to provide additional information before their appeals are reviewed by human moderators. In addition to giving moderators more information, we expected the friction in the appeal process would lead to a selection effect among users, with many insincere and toxic appeals being abandoned before getting any attention from human moderators. To evaluate our system, we conducted a randomized field experiment in a Reddit community of over 29 million users that lasted for four months. As a result of the selection effect, moderators viewed only 30% of initial appeals and less than 10% of the toxically worded appeals; yet they granted roughly the same number of appeals when compared with the control group. Overall, our system is effective at reducing moderator workload and minimizing their exposure to toxic content while honoring their preference for direct engagement and agency in appeals. 
    more » « less