ABSTRACT SalmonellaOuter Membrane Vesicles (OMVs) were recently shown to inhibit P22 bacteriophage infection. Furthermore, despite there being several published reports now independently describing (1) the marked prevalence of tRFs within secreted vesicle transcriptomes and (2) roles for specific tRFs in facilitating/inhibiting viral replication, there have been no examinations of the effects of vesicle-secreted tRFs on viral infection reported to date. Notably, while specific tRFs have been reported in a number of bacteria, the tRFs expressed by salmonellae have not been previously characterized. As such, we recently screened small RNA-seq datasets for the presence of recurrent, specifically excised tRFs and identified 31 recurrent, relatively abundant tRFs expressed bySalmonella entericaserovar Typhimurium (SL1344). What’s more, we findS. Typhimurium OMVs contain significant levels of tRFs highly complementary to knownSalmonella enterica-infecting bacteriophage with 17 of 31 tRFs bearing marked complementarity to at least one knownSalmonella enterica-infecting phage (averaging 97.4% complementarity over 22.9 nt). Most notably, tRNA-Thr-CGT-1-1, 44-73, bears 100% sequence complementary over its entire 30 nt length to 29 distinct, annotatedSalmonella enterica-infecting bacteriophage including P22. Importantly, we find inhibiting this tRF in secreted OMVs improves P22 infectivity in a dose dependent manner whereas raising OMV tRF levels conversely inhibits P22 infectivity. Furthermore, we find P22 phage pre-incubation with OMVs isolated from naïve, control SL1344S. Typhimurium, successfully rescues the ability ofS. Typhimurium transformed with a specific tRNA-Thr-CGT-1-1, 44-73 tRF inhibitor to defend against P22. Collectively, these experiments confirm tRFs secreted inS. Typhimurium OMVs are directly involved with and required for the ability of OMVs to defend against bacteriophage predation. As we find the majority of OMV tRFs are highly complementary to an array of knownSalmonella enterica-infecting bacteriophage, we suggest OMV tRFs may primarily function as a broadly acting, previously uncharacterized innate antiviral defense. 
                        more » 
                        « less   
                    
                            
                            Abiotic stressors impact outer membrane vesicle composition in a beneficial rhizobacterium: Raman spectroscopy characterization
                        
                    
    
            Abstract Outer membrane vesicles (OMVs) produced by Gram-negative bacteria have roles in cell-to-cell signaling, biofilm formation, and stress responses. Here, the effects of abiotic stressors on OMV contents and composition from biofilm cells of the plant health-promoting bacteriumPseudomonas chlororaphisO6 (PcO6) are examined. Two stressors relevant to this root-colonizing bacterium were examined: CuO nanoparticles (NPs)-a potential fertilizer and fungicide- and H2O2-released from roots during plant stress responses. Atomic force microscopy revealed 40–300 nm diameter OMVs from control and stressed biofilm cells. Raman spectroscopy with linear discriminant analysis (LDA) was used to identify changes in chemical profiles ofPcO6 cells and resultant OMVs according to the cellular stressor with 84.7% and 83.3% accuracies, respectively. All OMVs had higher relative concentrations of proteins, lipids, and nucleic acids thanPcO6 cells. The nucleic acid concentration in OMVs exhibited a cellular stressor-dependent increase: CuO NP-induced OMVs > H2O2-induced OMVs > control OMVs. Biochemical assays confirmed the presence of lipopolysaccharides, nucleic acids, and protein in OMVs; however, these assays did not discriminate OMV composition according to the cellular stressor. These results demonstrate the sensitivity of Raman spectroscopy using LDA to characterize and distinguish cellular stress effects on OMVs composition and contents. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1705874
- PAR ID:
- 10204302
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Selective cargo packaging into bacterial extracellular vesicles has been reported and implicated in many biological processes, however, the mechanism behind the selectivity has remained largely unexplored. In this study, proteomic analysis of outer membrane (OM) and OM vesicle (OMV) fractions from enterotoxigenic E. coli revealed significant differences in protein abundance in the OMV and OM fractions for cultures shifted to oxidative stress conditions. Analysis of sequences of proteins preferentially packaged into OMVs showed that proteins with oxidizable residues were more packaged into OMVs in comparison with those retained in the membrane. In addition, the results indicated two distinct classes of OM-associated proteins were differentially packaged into OMVs as a function of peroxide treatment. Implementing a Bayesian hierarchical model, OM lipoproteins were determined to be preferentially exported during stress whereas integral OM proteins were preferentially retained in the cell. Selectivity was determined to be independent of transcriptional regulation of the proteins upon oxidative stress and was validated using randomly selected protein candidates from the different cargo classes. Based on these data, a hypothetical functional and mechanistic basis for cargo selectivity was tested using OmpA constructs. Our study reveals a basic mechanism for cargo selectivity into OMVs that may be useful for the engineering of OMVs for future biotechnological applications.more » « less
- 
            Abstract Bacterial biofilms are highly abundant 3D living materials capable of performing complex biomechanical and biochemical functions, including programmable growth, self‐repair, filtration, and bioproduction. Methods to measure internal mechanical properties of biofilms in vivo with spatial resolution on the cellular scale have been lacking. Here, thousands of cells are tracked inside living 3D biofilms of the bacteriumVibrio choleraeduring and after the application of shear stress, for a wide range of stress amplitudes, periods, and biofilm sizes, which revealed anisotropic elastic and plastic responses of both cell displacements and cell reorientations. Using cellular tracking to infer parameters of a general mechanical model, spatially‐resolved measurements of the elastic modulus inside the biofilm are obtained, which correlate with the spatial distribution of the polysaccharides within the biofilm matrix. The noninvasive microrheology and force‐inference approach introduced here provides a general framework for studying mechanical properties with high spatial resolution in living materials.more » « less
- 
            Environmental stressors induce rapid physiological and behavioral shifts in vertebrate animals. However, the neurobiological mechanisms responsible for stress-induced changes in behavior are complex and not well understood. Similar to mammalian vertebrates, zebrafish adults display a preference for dark environments that is associated with predator avoidance, enhanced by stressors, and broadly used in assays for anxiety-like behavior. Although the larvae of zebrafish are a prominent model organism for understanding neural circuits, fewer studies have examined the effects of stressors on their behavior. This study examines the effects of noxious chemical and electric shock stressors on locomotion and light preference in zebrafish larvae. We found that both stressors elicited similar changes in behavior. Acute exposure induced increased swimming activity, while prolonged exposure depressed activity. Neither stressor produced a consistent shift in light/dark preference, but prolonged exposure to these stressors resulted in a pronounced decrease in exploration of different visual environments. We also examined the effects of exposure to a noxious chemical cue using whole-brain calcium imaging, and identified neural correlates in the area postrema, an area of the hindbrain containing noradrenergic and dopaminergic neurons. Pharmaceutical blockade experiments showed that ɑ-adrenergic receptors contribute to the behavioral response to an acute stressor but are not necessary for the response to a prolonged stressor. These results indicate that zebrafish larvae have complex behavioral responses to stressors comparable to those of adult animals, and also suggest that these responses are mediated by similar neural pathways.more » « less
- 
            Sourjik, Victor (Ed.)Cells must access resources to survive, and the anatomy of multicellular structures influences this access. In diverse multicellular eukaryotes, resources are provided by internal conduits that allow substances to travel more readily through tissue than they would via diffusion. Microbes growing in multicellular structures, called biofilms, are also affected by differential access to resources and we hypothesized that this is influenced by the physical arrangement of the cells. In this study, we examined the microanatomy of biofilms formed by the pathogenic bacteriumPseudomonas aeruginosaand discovered that clonal cells form striations that are packed lengthwise across most of a mature biofilm’s depth. We identified mutants, including those defective in pilus function and in O-antigen attachment, that show alterations to this lengthwise packing phenotype. Consistent with the notion that cellular arrangement affects access to resources within the biofilm, we found that while the wild type shows even distribution of tested substrates across depth, the mutants show accumulation of substrates at the biofilm boundaries. Furthermore, we found that altered cellular arrangement within biofilms affects the localization of metabolic activity, the survival of resident cells, and the susceptibility of subpopulations to antibiotic treatment. Our observations provide insight into cellular features that determine biofilm microanatomy, with consequences for physiological differentiation and drug sensitivity.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
