This paper considers the problem of kernel regression and classification with possibly unobservable response variables in the data, where the mechanism that causes the absence of information can depend on both predictors and the response variables. Our proposed approach involves two steps: First we construct a family of models (possibly infinite dimensional) indexed by the unknown parameter of the missing probability mechanism. In the second step, a search is carried out to find the empirically optimal member of an appropriate cover (or subclass) of the underlying family in the sense of minimizing the mean squared prediction error. The main focus of the paper is to look into some of the theoretical properties of these estimators. The issue of identifiability is also addressed. Our methods use a data-splitting approach which is quite easy to implement. We also derive exponential bounds on the performance of the resulting estimators in terms of their deviations from the true regression curve in general $$L_p$$ norms, where we allow the size of the cover or subclass to diverge as the sample size n increases. These bounds immediately yield various strong convergence results for the proposed estimators. As an application of our findings, we consider the problem of statistical classification based on the proposed regression estimators and also look into their rates of convergence under different settings. Although this work is mainly stated for kernel-type estimators, it can also be extended to other popular local-averaging methods such as nearest-neighbor and histogram estimators.
more »
« less
Uniform bounds for robust mean estimators
This paper is devoted to the estimators of the mean that provide strong non-asymptotic guarantees under minimal assumptions on the underlying distribution. The main ideas behind proposed techniques are based on bridging the notions of symmetry and robustness. We show that existing methods, such as median-of-means and Catoni’s estimators, can often be viewed as special cases of our construction. The main contribution of the paper is the proof of uniform bounds for the deviations of the stochastic process defined by proposed estimators. Moreover, we extend our results to the case of adversarial contamination where a constant fraction of the observations is arbitrarily corrupted. Finally, we apply our methods to the problem of robust multivariate mean estimation and show that obtained inequalities achieve optimal dependence on the proportion of corrupted samples.
more »
« less
- Award ID(s):
- 1712956
- PAR ID:
- 10204548
- Date Published:
- Journal Name:
- ArXivorg
- ISSN:
- 2331-8422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the relationship between adversarial robustness and differential privacy in high-dimensional algorithmic statistics. We give the first black-box reduction from privacy to robustness which can produce private estimators with optimal tradeoffs among sample complexity, accuracy, and privacy for a wide range of fundamental high-dimensional parameter estimation problems, including mean and covariance estimation. We show that this reduction can be implemented in polynomial time in some important special cases. In particular, using nearly-optimal polynomial-time robust estimators for the mean and covariance of high-dimensional Gaussians which are based on the Sum-of-Squares method, we design the first polynomial-time private estimators for these problems with nearly-optimal samples-accuracy-privacy tradeoffs. Our algorithms are also robust to a nearly optimal fraction of adversarially-corrupted samples.more » « less
-
We study the relationship between adversarial robustness and differential privacy in high-dimensional algorithmic statistics. We give the first black-box reduction from privacy to robustness which can produce private estimators with optimal tradeoffs among sample complexity, accuracy, and privacy for a wide range of fundamental high-dimensional parameter estimation problems, including mean and covariance estimation. We show that this reduction can be implemented in polynomial time in some important special cases. In particular, using nearly-optimal polynomial-time robust estimators for the mean and covariance of high-dimensional Gaussians which are based on the Sum-of-Squares method, we design the first polynomial-time private estimators for these problems with nearly-optimal samples-accuracy-privacy tradeoffs. Our algorithms are also robust to a constant fraction of adversarially-corrupted samples.more » « less
-
null (Ed.)We study the problem of learning Ising models in a setting where some of the samples from the underlying distribution can be arbitrarily corrupted. In such a setup, we aim to design statistically optimal estimators in a high-dimensional scaling in which the number of nodes p, the number of edges k and the maximal node degree d are allowed to increase to infinity as a function of the sample size n. Our analysis is based on exploiting moments of the underlying distribution, coupled with novel reductions to univariate estimation. Our proposed estimators achieve an optimal dimension independent dependence on the fraction of corrupted data in the contaminated setting, while also simultaneously achieving high-probability error guarantees with optimal sample-complexity. We corroborate our theoretical results by simulations.more » « less
-
Robust statistics aims to compute quantities to represent data where a fraction of it may be arbitrarily corrupted. The most essential statistic is the mean, and in recent years, there has been a flurry of theoretical advancement for efficiently estimating the mean in high dimensions on corrupted data. While several algorithms have been proposed that achieve near-optimal error, they all rely on large data size requirements as a function of dimension. In this paper, we perform an extensive experimentation over various mean estimation techniques where data size might not meet this requirement due to the highdimensional setting. For data with inliers generated from a Gaussian with known covariance, we find experimentally that several robust mean estimation techniques can practically improve upon the sample mean, with the quantum entropy scaling approach from Dong et.al. (NeurIPS 2019) performing consistently the best. However, this consistent improvement is conditioned on a couple of simple modifications to how the steps to prune outliers work in the high-dimension low-data setting, and when the inliers deviate significantly from Gaussianity. In fact, with these modifications, they are typically able to achieve roughly the same error as taking the sample mean of the uncorrupted inlier data, even with very low data size. In addition to controlled experiments on synthetic data, we also explore these methods on large language models, deep pretrained image models, and non-contextual word embedding models that do not necessarily have an inherent Gaussian distribution. Yet, in these settings, a mean point of a set of embedded objects is a desirable quantity to learn, and the data exhibits the high-dimension low-data setting studied in this paper. We show both the challenges of achieving this goal, and that our updated robust mean estimation methods can provide significant improvement over using just the sample mean. We additionally publish a library of Python implementations of robust mean estimation algorithms, allowing practitioners and researchers to apply these techniques and to perform further experimentation.more » « less
An official website of the United States government

