skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On regression and classification with possibly missing response variables in the data
This paper considers the problem of kernel regression and classification with possibly unobservable response variables in the data, where the mechanism that causes the absence of information can depend on both predictors and the response variables. Our proposed approach involves two steps: First we construct a family of models (possibly infinite dimensional) indexed by the unknown parameter of the missing probability mechanism. In the second step, a search is carried out to find the empirically optimal member of an appropriate cover (or subclass) of the underlying family in the sense of minimizing the mean squared prediction error. The main focus of the paper is to look into some of the theoretical properties of these estimators. The issue of identifiability is also addressed. Our methods use a data-splitting approach which is quite easy to implement. We also derive exponential bounds on the performance of the resulting estimators in terms of their deviations from the true regression curve in general $$L_p$$ norms, where we allow the size of the cover or subclass to diverge as the sample size n increases. These bounds immediately yield various strong convergence results for the proposed estimators. As an application of our findings, we consider the problem of statistical classification based on the proposed regression estimators and also look into their rates of convergence under different settings. Although this work is mainly stated for kernel-type estimators, it can also be extended to other popular local-averaging methods such as nearest-neighbor and histogram estimators.  more » « less
Award ID(s):
1916161
PAR ID:
10473243
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Metrika
ISSN:
0026-1335
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We investigate a data-driven approach to constructing uncertainty sets for robust optimization problems, where the uncertain problem parameters are modeled as random variables whose joint probability distribution is not known. Relying only on independent samples drawn from this distribution, we provide a nonparametric method to estimate uncertainty sets whose probability mass is guaranteed to approximate a given target mass within a given tolerance with high confidence. The nonparametric estimators that we consider are also shown to obey distribution-free finite-sample performance bounds that imply their convergence in probability to the given target mass. In addition to being efficient to compute, the proposed estimators result in uncertainty sets that yield computationally tractable robust optimization problems for a large family of constraint functions. 
    more » « less
  2. We propose a framework for analyzing the sensitivity of counterfactuals to parametric assumptions about the distribution of latent variables in structural models. In particular, we derive bounds on counterfactuals as the distribution of latent variables spans nonparametric neighborhoods of a given parametric specification while other “structural” features of the model are maintained. Our approach recasts the infinite‐dimensional problem of optimizing the counterfactual with respect to the distribution of latent variables (subject to model constraints) as a finite‐dimensional convex program. We also develop an MPEC version of our method to further simplify computation in models with endogenous parameters (e.g., value functions) defined by equilibrium constraints. We propose plug‐in estimators of the bounds and two methods for inference. We also show that our bounds converge to the sharp nonparametric bounds on counterfactuals as the neighborhood size becomes large. To illustrate the broad applicability of our procedure, we present empirical applications to matching models with transferable utility and dynamic discrete choice models. 
    more » « less
  3. Summary We study quantile trend filtering, a recently proposed method for nonparametric quantile regression, with the goal of generalizing existing risk bounds for the usual trend-filtering estimators that perform mean regression. We study both the penalized and the constrained versions, of order $$r \geqslant 1$$, of univariate quantile trend filtering. Our results show that both the constrained and the penalized versions of order $$r \geqslant 1$$ attain the minimax rate up to logarithmic factors, when the $(r-1)$th discrete derivative of the true vector of quantiles belongs to the class of bounded-variation signals. Moreover, we show that if the true vector of quantiles is a discrete spline with a few polynomial pieces, then both versions attain a near-parametric rate of convergence. Corresponding results for the usual trend-filtering estimators are known to hold only when the errors are sub-Gaussian. In contrast, our risk bounds are shown to hold under minimal assumptions on the error variables. In particular, no moment assumptions are needed and our results hold under heavy-tailed errors. Our proof techniques are general, and thus can potentially be used to study other nonparametric quantile regression methods. To illustrate this generality, we employ our proof techniques to obtain new results for multivariate quantile total-variation denoising and high-dimensional quantile linear regression. 
    more » « less
  4. For the last two decades, high-dimensional data and methods have proliferated throughout the literature. Yet, the classical technique of linear regression has not lost its usefulness in applications. In fact, many high-dimensional estimation techniques can be seen as variable selection that leads to a smaller set of variables (a “submodel”) where classical linear regression applies. We analyze linear regression estimators resulting from model selection by proving estimation error and linear representation bounds uniformly over sets of submodels. Based on deterministic inequalities, our results provide “good” rates when applied to both independent and dependent data. These results are useful in meaningfully interpreting the linear regression estimator obtained after exploring and reducing the variables and also in justifying post-model-selection inference. All results are derived under no model assumptions and are nonasymptotic in nature. 
    more » « less
  5. This article focuses on the problem of kernel regression estimation in the presence of nonignorable incomplete data with particular focus on the limiting distribution of the maximal deviation of the proposed estimators. From an applied point of view, such a limiting distribution enables one to construct asymptotically correct uniform bands, or perform tests of hypotheses, for a regression curve when the available data set suffers from missing (not necessarily at random) response values. Furthermore, such asymptotic results have always been of theoretical interest in mathematical statistics. We also present some numerical results that further confirm and complement the theoretical developments of this paper. 
    more » « less