skip to main content

Title: Stochastic Lagrangian dynamics of vorticity. Part 1. General theory for viscous, incompressible fluids
Prior mathematical work of Constantin & Iyer ( Commun. Pure Appl. Maths , vol. 61, 2008, pp. 330–345; Ann. Appl. Probab. , vol. 21, 2011, pp. 1466–1492) has shown that incompressible Navier–Stokes solutions possess infinitely many stochastic Lagrangian conservation laws for vorticity, backward in time, which generalize the invariants of Cauchy ( Sciences mathématiques et physique , vol. I, 1815, pp. 33–73) for smooth Euler solutions. We reformulate this theory for the case of wall-bounded flows by appealing to the Kuz'min ( Phys. Lett. A , vol. 96, 1983, pp. 88–90)–Oseledets ( Russ. Math. Surv. , vol. 44, 1989, p. 210) representation of Navier–Stokes dynamics, in terms of the vortex-momentum density associated to a continuous distribution of infinitesimal vortex rings. The Constantin–Iyer theory provides an exact representation for vorticity at any interior point as an average over stochastic vorticity contributions transported from the wall. We point out relations of this Lagrangian formulation with the Eulerian theory of Lighthill (Boundary layer theory. In Laminar Boundary Layers (ed. L. Rosenhead), 1963, pp. 46–113)–Morton ( Geophys. Astrophys. Fluid Dyn. , vol. 28, 1984, pp. 277–308) for vorticity generation at solid walls, and also with a statistical result of Taylor ( Proc. R. Soc. Lond. A , vol. 135, 1932, pp. 685–702)–Huggins ( J. Low Temp. Phys. , vol. 96, 1994, pp. 317–346), which connects dissipative drag with organized cross-stream motion of vorticity and which is closely analogous to the ‘Josephson–Anderson relation’ for quantum superfluids. We elaborate a Monte Carlo numerical Lagrangian scheme to calculate the stochastic Cauchy invariants and their statistics, given the Eulerian space–time velocity field. The method is validated using an online database of a turbulent channel-flow simulation (Graham et al. , J. Turbul. , vol. 17, 2016, pp. 181–215), where conservation of the mean Cauchy invariant is verified for two selected buffer-layer events corresponding to an ‘ejection’ and a ‘sweep’. The variances of the stochastic Cauchy invariants grow exponentially backward in time, however, revealing Lagrangian chaos of the stochastic trajectories undergoing both fluid advection and viscous diffusion.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We use an online database of a turbulent channel-flow simulation at $Re_\tau =1000$ (Graham et al. J. Turbul. , vol. 17, issue 2, 2016, pp. 181–215) to determine the origin of vorticity in the near-wall buffer layer. Following an experimental study of Sheng et al. ( J. Fluid Mech. , vol. 633, 2009, pp.17–60), we identify typical ‘ejection’ and ‘sweep’ events in the buffer layer by local minima/maxima of the wall stress. In contrast to their conjecture, however, we find that vortex lifting from the wall is not a discrete event requiring $\sim$ 1 viscous time and $\sim$ 10 wall units, but is instead a distributed process over a space–time region at least $1\sim 2$ orders of magnitude larger in extent. To reach this conclusion, we exploit a rigorous mathematical theory of vorticity dynamics for Navier–Stokes solutions, in terms of stochastic Lagrangian flows and stochastic Cauchy invariants, conserved on average backward in time. This theory yields exact expressions for vorticity inside the flow domain in terms of vorticity at the wall, as transported by viscous diffusion and by nonlinear advection, stretching and rotation. We show that Lagrangian chaos observed in the buffer layer can be reconciled with saturated vorticity magnitude by ‘virtual reconnection’: although the Eulerian vorticity field in the viscous sublayer has a single sign of spanwise component, opposite signs of Lagrangian vorticity evolve by rotation and cancel by viscous destruction. Our analysis reveals many unifying features of classical fluids and quantum superfluids. We argue that ‘bundles’ of quantized vortices in superfluid turbulence will also exhibit stochastic Lagrangian dynamics and satisfy stochastic conservation laws resulting from particle relabelling symmetry. 
    more » « less
  2. We investigate the effect of constant-vorticity background shear on the properties of wavetrains in deep water. Using the methodology of Fokas ( A Unified Approach to Boundary Value Problems , 2008, SIAM), we derive a higher-order nonlinear Schrödinger equation in the presence of shear and surface tension. We show that the presence of shear induces a strong coupling between the carrier wave and the mean-surface displacement. The effects of the background shear on the modulational instability of plane waves is also studied, where it is shown that shear can suppress instability, although not for all carrier wavelengths in the presence of surface tension. These results expand upon the findings of Thomas et al.  ( Phys. Fluids , vol. 24 (12), 2012, 127102). Using a modification of the generalized Lagrangian mean theory in Andrews & McIntyre ( J. Fluid Mech. , vol. 89, 1978, pp. 609–646) and approximate formulas for the velocity field in the fluid column, explicit, asymptotic approximations for the Lagrangian and Stokes drift velocities are obtained for plane-wave and Jacobi elliptic function solutions of the nonlinear Schrödinger equation. Numerical approximations to particle trajectories for these solutions are found and the Lagrangian and Stokes drift velocities corresponding to these numerical solutions corroborate the theoretical results. We show that background currents have significant effects on the mean transport properties of waves. In particular, certain combinations of background shear and carrier wave frequency lead to the disappearance of mean-surface mass transport. These results provide a possible explanation for the measurements reported in Smith ( J. Phys. Oceanogr. , vol. 36, 2006, pp. 1381–1402). Our results also provide further evidence of the viability of the modification of the Stokes drift velocity beyond the standard monochromatic approximation, such as recently proposed in Breivik et al.  ( J. Phys. Oceanogr. , vol. 44, 2014, pp. 2433–2445) in order to obtain a closer match to a range of complex ocean wave spectra. 
    more » « less
  3. null (Ed.)
    Abstract We formulate a class of stochastic partial differential equations based on Kelvin’s circulation theorem for ideal fluids. In these models, the velocity field is randomly transported by white-noise vector fields, as well as by its own average over realizations of this noise. We call these systems the Lagrangian averaged stochastic advection by Lie transport (LA SALT) equations. These equations are nonlinear and non-local, in both physical and probability space. Before taking this average, the equations recover the Stochastic Advection by Lie Transport (SALT) fluid equations introduced by Holm (Proc R Soc A 471(2176):20140963, 2015). Remarkably, the introduction of the non-locality in probability space in the form of momentum transported by its own mean velocity gives rise to a closed equation for the expectation field which comprises Navier–Stokes equations with Lie–Laplacian ‘dissipation’. As such, this form of non-locality provides a regularization mechanism. The formalism we develop is closely connected to the stochastic Weber velocity framework of Constantin and Iyer (Commun Pure Appl Math 61(3):330–345, 2008) in the case when the noise correlates are taken to be the constant basis vectors in $$\mathbb {R}^3$$ R 3 and, thus, the Lie–Laplacian reduces to the usual Laplacian. We extend this class of equations to allow for advected quantities to be present and affect the flow through exchange of kinetic and potential energies. The statistics of the solutions for the LA SALT fluid equations are found to be changing dynamically due to an array of intricate correlations among the physical variables. The statistical properties of the LA SALT physical variables propagate as local evolutionary equations which when spatially integrated become dynamical equations for the variances of the fluctuations. Essentially, the LA SALT theory is a non-equilibrium stochastic linear response theory for fluctuations in SALT fluids with advected quantities. 
    more » « less
  4. The effect of slip surfaces on the laminar–turbulent separatrix of plane Poiseuille flow is studied by direct numerical simulation. In laminar flows, the inclusion of the slip surfaces results in a drag reduction of over 10 %, which is in good agreement with previous studies and the theory of laminar slip flows. Turbulence lifetimes, the likelihood that turbulence is sustained, is investigated for transitional flows with various slip lengths. We show that slip surfaces decrease the likelihood of sustained turbulence compared to the no-slip case, and the likelihood is further decreased as slip length is increased. A more deterministic analysis of the effects of slip surfaces on a transition to turbulence is performed by using nonlinear travelling-wave solutions to the Navier–Stokes equations, also known as exact coherent solutions. Two solution families, dubbed P3 and P4, are used since their lower-branch solutions are embedded on the boundary of the basin of attraction of laminar and turbulent flows (Park & Graham, J. Fluid Mech. , vol. 782, 2015, pp. 430–454). Additionally, they exhibit distinct flow structures – the P3 and P4 are denoted as core mode and critical-layer mode, respectively. Distinct effects of slip surfaces on the solutions are observed by the skin-friction evolution, linear growth rate and phase-space projection of transitional trajectories. The slip surface appears to modify the transition dynamics very little for the core mode, but quite considerably for the critical-layer mode. Most importantly, the slip surface promotes different transition dynamics – an early and bypass-like transition for the core mode and a delayed and H- or K-type-like transition for the critical-layer mode. We explain these distinct transition dynamics based on spatio-temporal and quadrant analyses. It is found that slip surfaces promote the prevalence of strong wall-toward motions (sweep-like events) near vortex cores close to the channel centre, inducing an early transition, while long sustained ejection events are present in the region of the $\unicode[STIX]{x1D6EC}$ -shaped vortex cores close to the critical layer, resulting in a delayed transition. This should motivate flow control strategies to fully exploit these distinct transition dynamics for transition to turbulence. 
    more » « less
  5. A computational study of vorticity reconnection, associated with the breaking and reconnection of vortex lines, during vortex cutting by a blade is reported. A series of Navier–Stokes simulations of vortex cutting with different values of the vortex strength are described, and the different phases in the vortex cutting process are compared to those of the more traditional vortex tube reconnection process. Each of the three phases of vortex tube reconnection described by Melander & Hussain ( Phys. Fluids  A, vol. 1(4), 1989, pp. 633–635) are found to have counterparts in the vortex cutting problem, although we also point out numerous differences in the detailed mechanics by which these phases are achieved. Of particular importance in the vortex cutting process is the presence of vorticity generation from the blade surface within the reconnection region and the presence of strong vortex stretching due to the ambient flow about the blade leading edge. A simple exact Navier–Stokes solution is presented that describes the process by which incident vorticity is stretched and carried towards the surface by the ambient flow, and then interacts with and is eventually annihilated by diffusive interaction with vorticity generated at the surface. The model combines a Hiemenz straining flow, a Burgers vortex sheet and a Stokes first problem boundary layer, resulting in a nonlinear ordinary differential equation and a partial differential equation in two scaled time and distance variables that must be solved numerically. The simple model predictions exhibit qualitative agreement with the full numerical simulation results for vorticity annihilation near the leading-edge stagnation point during vortex cutting. 
    more » « less