- Award ID(s):
- 1703997
- PAR ID:
- 10271649
- Date Published:
- Journal Name:
- Proceedings of the Royal Society of Edinburgh: Section A Mathematics
- Volume:
- 150
- Issue:
- 6
- ISSN:
- 0308-2105
- Page Range / eLocation ID:
- 2776 to 2814
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract In Jayanti and Trivisa (2022 J. Math. Fluid Mech. 24 46), the authors proved the existence of local-in-time weak solutions to a model of superfluidity. The system of governing equations was derived in Pitaevskii (1959 Sov. Phys. JETP 8 282–287) and couples the nonlinear Schrödinger equation and the Navier–Stokes equations. In this article, we prove a weak–strong type uniqueness theorem for these weak solutions. Only some of their regularity properties are used, allowing room for improved existence theorems in the future, with compatible uniqueness results.more » « less
-
null (Ed.)Abstract We formulate a class of stochastic partial differential equations based on Kelvin’s circulation theorem for ideal fluids. In these models, the velocity field is randomly transported by white-noise vector fields, as well as by its own average over realizations of this noise. We call these systems the Lagrangian averaged stochastic advection by Lie transport (LA SALT) equations. These equations are nonlinear and non-local, in both physical and probability space. Before taking this average, the equations recover the Stochastic Advection by Lie Transport (SALT) fluid equations introduced by Holm (Proc R Soc A 471(2176):20140963, 2015). Remarkably, the introduction of the non-locality in probability space in the form of momentum transported by its own mean velocity gives rise to a closed equation for the expectation field which comprises Navier–Stokes equations with Lie–Laplacian ‘dissipation’. As such, this form of non-locality provides a regularization mechanism. The formalism we develop is closely connected to the stochastic Weber velocity framework of Constantin and Iyer (Commun Pure Appl Math 61(3):330–345, 2008) in the case when the noise correlates are taken to be the constant basis vectors in $$\mathbb {R}^3$$ R 3 and, thus, the Lie–Laplacian reduces to the usual Laplacian. We extend this class of equations to allow for advected quantities to be present and affect the flow through exchange of kinetic and potential energies. The statistics of the solutions for the LA SALT fluid equations are found to be changing dynamically due to an array of intricate correlations among the physical variables. The statistical properties of the LA SALT physical variables propagate as local evolutionary equations which when spatially integrated become dynamical equations for the variances of the fluctuations. Essentially, the LA SALT theory is a non-equilibrium stochastic linear response theory for fluctuations in SALT fluids with advected quantities.more » « less
-
The aim of this note is to present the recent results by Buckmaster, Cao-Labora, and Gómez-Serrano [Smooth imploding solutions for 3D compressible fluids, Arxiv preprint arXiv:2208.09445, 2022] concerning the existence of “imploding singularities” for the 3D isentropic compressible Euler and Navier-Stokes equations. Our work builds upon the pioneering work of Merle, Raphaël, Rodnianski and Szeftel [Invent. Math. 227 (2022), pp. 247–413; Ann. of Math. (2) 196 (2022), pp. 567–778; Ann. of Math. (2) 196 (2022), pp. 779–889] and proves the existence of self-similar profiles for all adiabatic exponents γ > 1 \gamma >1 in the case of Euler; as well as proving asymptotic self-similar blow-up for γ = 7 5 \gamma =\frac 75 in the case of Navier-Stokes. Importantly, for the Navier-Stokes equation, the solution is constructed to have density bounded away from zero and constant at infinity, the first example of blow-up in such a setting. For simplicity, we will focus our exposition on the compressible Euler equations.more » « less
-
We establish the existence of global pathwise solutions for the stochastic non‐Newtonian incompressible fluid equations in two space dimensions. Moreover, we show that said solutions converge in probability to solutions of the stochastic Navier‐Stokes equations in the appropriate limit. Our approach is based on Galerkin approximations and the theory of martingale solutions.
-
Abstract We consider solutions of the Navier‐Stokes equations in 3d with vortex filament initial data of arbitrary circulation, that is, initial vorticity given by a divergence‐free vector‐valued measure of arbitrary mass supported on a smooth curve. First, we prove global well‐posedness for perturbations of the Oseen vortex column in scaling‐critical spaces. Second, we prove local well‐posedness (in a sense to be made precise) when the filament is a smooth, closed, non‐self‐intersecting curve. Besides their physical interest, these results are the first to give well‐posedness in a neighborhood of large self‐similar solutions of 3d Navier‐Stokes, as well as solutions that are locally approximately self‐similar. © 2023 Wiley Periodicals LLC.