The Association of American Colleges and Universities identifies undergraduate research experiences as a high impact practice for increasing student success and retention in STEM majors. Most undergraduate research opportunities for community college engineering students involve partnerships with universities and typically take the form of paid summer experiences. Course-based Undergraduate Research Experiences (CUREs) offer an alternative model with potential for significant expansion of research opportunities for students. This approach weaves research into the courses students are already required to complete for their degrees. CUREs are an equitable approach for introducing students to research because they do not demand extracurricular financial and/or time commitments beyond what students must already commit to for their courses. This paper describes an adaptable model for implementing a CURE in an introductory engineering design and computing course that features applications of low-cost microcontrollers. Students work toward course learning outcomes focused on computer programming, engineering design processes, and effective teamwork in the context of multi-term research and development efforts to design, build, and test devices for other CUREs in science lab courses as well as for other applications at the college or with community partners. Students choose from a menu of projects each term, with a typical course offering involving four to six different projects running simultaneously. Each team identifies a focused design and development scope of work within the larger context of the project they are interested in. They give weekly progress reports and gather input from their customers. The work culminates in a prototype and final report to document their work for student teams who will carry it forward in future terms. We assessed the impact of the experience on students’ beliefs about science and engineering, STEM confidence, and career aspirations using a nationally normed survey for CUREs in STEM and report results from five terms of offering this course. We find statistically significant pre-post gains on two-thirds of the survey items relating to students’ understanding of the research process and confidence in their STEM abilities. The pre-post gains are generally comparable to those reported by others who used the same survey to assess the impact of a summer research experience for community college students. These findings indicate that the benefits of student participation in this CURE model are comparable to the benefits students see by participation in summer research programs.
more »
« less
Positive Effects of Summer Research Program on Diverse Community College Students
Student participation in undergraduate research programs has been linked to improved content knowledge, skills, and confidence. However, few research opportunities exist for community college students. This study explores the positive effects of a summer research program on three diverse cohorts of such students. The Transfer-to-Excellence Research Experiences for Undergraduate program is a hands-on summer research internship for California community college students. The program seeks to inspire students to complete a Bachelor's degree in science or engineering and primarily serves identities underrepresented in those fields. Analysis of mixed methods evaluation data shows that after participating in the program, community college students were better able to find scholarly resources, design ethical scientific experiments, conduct independent research, and analyze data. Additionally, participation in the program enhanced students' science identity and confidence to pursue further education and careers in science and engineering fields.
more »
« less
- Award ID(s):
- 1757690
- PAR ID:
- 10205102
- Date Published:
- Journal Name:
- 2020 IEEE Global Engineering Education Conference (EDUCON)
- Page Range / eLocation ID:
- 465 to 471
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Broadening participation in engineering among underrepresented minority students remains a big challenge for institutions of higher education. Since a large majority of underrepresented students attend community colleges, engineering transfer programs at these community colleges can play an important role in addressing this challenge. However, for most community college engineering programs, developing strategies and programs to increase the number and diversity of students successfully pursuing careers in engineering is especially challenging due to limited expertise, shrinking resources, and continuing budget crises. This paper is a description of how a small engineering transfer program at a Hispanic-Serving community college in California developed effective partnerships with high schools, other institutions of higher education, and industry partners in order to create opportunities for underrepresented community college students to excel in engineering. Developed through these partnerships are programs for high school students, current community college students, and community college engineering faculty. Programs for high school students include a) the Summer Engineering Institute – a two-week residential summer camp for sophomore and junior high school students, and b) the STEM Institute – a three-week program for high school freshmen to explore STEM fields. Academic and support programs for college students include: a) Math Jam – a one-week intensive math placement test review and preparation program; b) a scholarship and mentoring program academically talented and financially needy STEM students; c) a two-week introduction to research program held during the winter break to prepare students for research internships; d) a ten-week summer research internship program; e) Physics Jam – an intensive program to prepare students for success in Physics; f) Embedded Peer Instruction Cohort – a modified Supplemental Instruction program for STEM courses; g) STEM Speaker Series – a weekly presentation by professionals talking about their career and educational paths. Programs for community college STEM faculty and transfer programs include: a) Summer Engineering Teaching Institute – a two-day teaching workshop for community college STEM faculty; b) Joint Engineering Program – a consortium of 28 community college engineering programs all over California to align curriculum, improve teaching effectiveness, improve the engineering transfer process, and strengthen community college engineering transfer programs; c) Creating Alternative Learning Strategies for Transfer Engineering Programs – a collaborative program that aims to increase access to engineering courses for community college students through online instruction and alternative classroom models; and d) California Lower-Division Engineering Articulation Workshop – to align the engineering curriculum. In addition to describing the development and implementation of these programs, the paper will also provide details on how they have contributed to increasing the interest, facilitating the entry, improving the retention and enhancing the success of underrepresented minority students in engineering, as well as contributing to the strengthening of the community college engineering education pipeline.more » « less
-
Opportunities for undergraduate research in STEM programs at community colleges can be few where lower-division science curriculum emphasizes classroom and laboratory-based learning and research laboratories are limited in number. This is particularly true in the geosciences where specialized programs are extremely rare. Urban serving academic research institutions have a unique role and opportunity to partner with regional community college programs for undergraduate research early-on in student post-secondary educational experiences. Programs built for community college transfer students to urban serving undergraduate programs can serve to integrate students into major programs and help reduce transfer shock. The benefits of exploring research as an undergraduate scholar are numerous and include: building towards mastery of technical skills; developing problem-solving in a real-world environment; reading and digesting scientific literature; analyzing experimental and simulation data; working independently and as part of a team; developing a mentoring relationship with a research advisor; and building a sense of belonging and confidence in a scientific field. However, many undergraduate research internships are targeted towards junior-level STEM majors already engaged in upper-division coursework and considering graduate school which effectively excludes community college students from participating. The Center for Climate and Aerosol Research (CCAR) Research Experience for Undergraduate program at Portland State University serves to help build the future diverse research community. 10-week intern research experiences are paired with an expert faculty mentor are designed for students majoring in the natural/physical sciences but not necessarily with a background in climate or atmospheric science. Additional programmatic activities include: 1-week orientation and training using short courses, faculty research seminars, and hands-on group workshops; academic professional and career development workshops throughout summer; journal club activities; final presentations at end of summer CCAR symposium; opportunities for travel for student presentations at scientific conferences; and social activities. Open to all qualifying undergraduates, since 2014 the program recruits primarily from regional (Northwest) community colleges, rural schools, and Native American serving institutions; recruiting students who would be unlikely to be otherwise exposed to such opportunities at their home institution. Over the past 9 cohorts of REU interns (2014-2019), approximately one third of CCAR REU scholars are community colleges students. Here we present criteria employed for selection of REU scholars and an analysis of selection biases in a comparison of students from community colleges, 4-year colleges, and PhD granting universities. We further investigate differential outcomes in efficacy of the REU program using evaluation data to assess changes over the program including: knowledge, intrinsic motivation, extrinsic motivation, science identity, program satisfaction, and career aspirations. In this presentation, we present these findings along with supportive qualitative analyses and discuss their implications for community college students in undergraduate research programs in geosciences.more » « less
-
The purpose of this study was to examine the influence of multi-layered mentoring in summer engineering programs on confidence in understanding engineering research, engineering disciplines and the ability to conduct engineering research. This paper describes the work in progress towards incorporating this approach into summer programs at Rutgers University. The participants in the study included high school students from over 6 different high schools in New Jersey, coupled with in-service teachers who were participants in a National Science Foundation RET Site: Rutgers University Research Experience for Teachers in Engineering for Green Energy Technology and undergraduate scholars who participated in the REU Site: Green Energy Technology Undergraduate Program. The perceptions, understanding and evaluation of the program before the implementation of the multi-layered mentorship program are compared to the multi-layered program. High school students expressed higher confidence levels in the engineering design cycle and knowledge of the engineering discipline in the multi-layered mentorship program. Undergraduate students who were in labs where they peer-mentored teachers expressed higher levels of confidence in their skills as researchers than undergraduate students who did not peer-mentor in-service teachers or high school students. Future work will include enhanced data sampling, a revision of interview questions and assessment of participant’s understanding of concepts via quizzes.more » « less
-
Freitag, Nancy E. (Ed.)The National Summer Undergraduate Research Program (NSURP) is a mentored summer research program in biosciences for undergraduate students from underrepresented backgrounds in science, technology, engineering, and mathematics (STEM). Conducted virtually over 8 weeks every summer starting in 2020, NSURP provides accessible and flexible research experiences to meet the needs of geographically diverse and schedule-constrained students. Drawing from mentee reporting and surveys conducted within the NSURP framework involving over 350 underrepresented minority undergraduate students over three cohorts (2020–2022), matched with mentors, this paper highlights the potential benefits of students participating in virtual mentored research experiences. In addition to increased access to quality research experiences for students who face travel or academic setting constraints, we found that virtual mentoring fosters cross-cultural collaborations, generates novel research questions, and expands professional networks. Moreover, this study emphasizes the role of virtual mentorship opportunities in fostering inclusivity and support for individuals from underrepresented groups in STEM fields. By overcoming barriers to full participation in the scientific community, virtual mentorship programs can create a more equitable and inclusive environment for aspiring researchers. This research contributes to the growing body of literature on the effectiveness and the potential of virtual research programs and mentorship opportunities in broadening participation and breaking down barriers in STEM education and careers. IMPORTANCESummer Research Experiences for Undergraduates (REUs) are established to provide platforms for interest in scientific research and as tools for eventual matriculation to scientific graduate programs. Unfortunately, the COVID-19 pandemic forced the cancellation of in-person programs for 2020 and 2021, creating the need for alternative programming. The National Summer Undergraduate Research Project (NSURP) was created to provide a virtual option to REUs in microbiology to compensate for the pandemic-initiated loss of research opportunities. Although in-person REUs have since been restored, NSURP currently remains an option for those unable to travel to in-person programs in the first place due to familial, community, and/or monetary obligations. This study examines the effects of the program's first 3 years, documenting the students’ experiences, and suggests future directions and areas of study related to the impact of virtual research experiences on expanding and diversifying science, technology, engineering, and mathematics.more » « less
An official website of the United States government

