- Award ID(s):
- 1701519
- NSF-PAR ID:
- 10205267
- Date Published:
- Journal Name:
- Biomimetics
- Volume:
- 4
- Issue:
- 3
- ISSN:
- 2313-7673
- Page Range / eLocation ID:
- 59
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Water droplet transport on fibers is of great importance for achieving high water collection efficiency from fog. Here, we exploit a new droplet sliding mechanism to accelerate the droplet coalescence and collection for highly efficient fog harvesting by coating hydrophilic microfibers with superhydrophobic layers of assembled carbon nanoparticles. We find that during the initial water collection, unlike the pinned droplets having axisymmetric barrel shapes wrapped around uncoated microfibers, the hanging droplets on coated microfibers with non-wrapping clamshell shapes are highly mobile due to their lower contact hysteresis adhesion; these are observed to oscillate, coalesce, and sweep the growing droplets along the horizontally placed microfibers. The driving force for droplet transport is mainly ascribed to the coalescence energy release and fog flow. After introducing small gravity force by tilting coated microfibers with a small angle of 5°, we find that it can effectively drive the oscillating mobile droplets for directional transport by rapidly sweeping the droplets with a much higher frequency. Finally, the water collection rate from fog on uncoated microfibers over a prolonged duration is found to be improved over 2 times after superhydrophobic coating, and it is further enhanced over 5 times after a small tilting angle of 5°.more » « less
-
Abstract To address the global water shortage crisis, one of the promising solutions is to collect freshwater from the environmental resources such as fog. However, the efficiency of conventional fog collectors remains low due to the viscous drag of fog-laden wind deflected around the collecting surface. Here, we show that the three-dimensional and centimetric
kirigami structures can control the wind flow, forming quasi-stable counter-rotating vortices. The vortices regulate the trajectories of incoming fog clusters and eject extensive droplets to the substrate. As the characteristic structural length is increased to the size of vortices, we greatly reduce the dependence of fog collection on the structural delicacy. Together with gravity-directed gathering by the folds, thekirigami fog collector yields a collection efficiency of 16.1% at a low wind speed of 0.8 m/s and is robust against surface characteristics. The collection efficiency is maintained even on a 1 m2collector in an outdoor setting. -
Abstract With an increasing body of evidence that SARS-CoV-2 is an airborne pathogen, droplet character formed during speech, coughs, and sneezes are important. Larger droplets tend to fall faster and are less prone to drive the airborne transmission pathway. Alternatively, small droplets (aerosols) can remain suspended for long time periods. The small size of SARS-CoV-2 enables it to be encapsulated in these aerosols, thereby increasing the pathogen’s ability to be transmitted via airborne paths. Droplet formation during human respiratory events relates to airspeed (speech, cough, sneeze), fluid properties of the saliva/mucus, and the fluid content itself. In this work, we study the fluidic drivers (fluid properties and content) and their influence on factors relating to transmissibility. We explore the relationship between saliva fluid properties and droplet airborne transmission paths. Interestingly, the natural human response appears to potentially work with these drivers to mitigate pathogen transmission. In this work, the saliva is varied using two approaches: (1) modifying the saliva with colloids that increase the viscosity/surface tension, and (2) stimulating the saliva content to increased/decreased levels. Through modern experimental and numerical flow diagnostic methods, the character, content, and exposure to droplets and aerosols are all evaluated. The results indicate that altering the saliva properties can significantly impact the droplet size distribution, the formation of aerosols, the trajectory of the bulk of the droplet plume, and the exposure (or transmissibility) to droplets. High-fidelity numerical methods used and verify that increased droplet size character enhances droplet fallout. In the context of natural saliva response, we find previous studies indicating natural human responses of increased saliva viscosity from stress and reduced saliva content from either stress or illness. These responses both favorably correspond to reduced transmissibility. Such a finding also relates to potential control methods, hence, we compared results to a surgical mask. In general, we find that saliva alteration can produce fewer and larger droplets with less content and aerosols. Such results indicate a novel approach to alter SARS-CoV-2’s transmission path and may act as a way to control the COVID-19 pandemic, as well as influenza and the common cold.
-
Abstract This paper shows how clusters of radiation-stabilized water droplets levitated in an upward flow of air and water vapor above a heated water surface can be modeled using Spalding's self-similarity theory of heat and mass transfer and Stefan flow. The model describes equilibrium droplet states, including stability conditions, as well as nonequilibrium (quasi-steady) transient evolution. Equilibrium states are shown to exist when Stefan-flow supersaturation, which has a quadratic-like variation with height above the water surface, and radiation-stabilized equilibrium supersaturation, which is nearly constant with height, are equal. The latter can be predicted by a fundamentally derived function of absorbed radiant flux (linear), droplet radius (linear if opaque), continuum thermal conductivity, and thermodynamic properties. In fact, all of the experimentally observed droplet behavior can be predicted using simple analytical results based on quasi-steady droplet energy and continuum transport. Unsteady droplet energy, Knudsen-layer transport, numerical solutions, and curve-fitting of numerical computations, as used previously in modeling this behavior, are not necessary. An interesting reversal of the usual effect of mass transfer on droplet drag in low-Re flow when levitated droplets are irradiated asymmetrically by significant infrared radiation is also postulated, which relates to the relative importance of normal (pressure) and tangential (shear stress) drag. This theory of radiation-augmented droplet evaporation, condensation, and relative motion in a moving gas has application to conditions in clouds, wherein droplets can experience either net radiative heating or cooling and fluctuating updrafts or downdrafts.more » « less
-
Partially wetting droplets under an airflow can exhibit complex behaviours that arise from the coupling of surface tension, inertia of the external flow and contact-line dynamics. Recent experiments by Hooshanginejad et al. ( J. Fluid Mech. , vol. 901, 2020) revealed that a millimetric partially wetting water droplet under an impinging jet can oscillate in place, split or depin away from the jet, depending on the magnitude (i.e. $5\unicode{x2013}20\ {\rm m}\ {\rm s}^{-1}$ ) and position of the jet. To rationalise the experimental observations, we develop a two-dimensional lubrication model of the droplet that incorporates the external pressure of the impinging high-Reynolds-number jet, in addition to the capillary and hydrostatic pressures of the droplet. Distinct from the previous model by Hooshanginejad et al. ( J. Fluid Mech. , vol. 901, 2020), we simulate the motion of the contact line using precursor film and disjoining pressure, which allows us to capture a wider range of droplet behaviours, including the droplet dislodging to one side. Our simulations exhibit a comparable time-scale of droplet deformations and similar outcomes as the experimental observations. We also obtain the analytical steady-state solutions of the droplet shapes and construct the minimum criteria for splitting and depinning.more » « less