Through high-fidelity numerical simulation based on the lattice Boltzmann method, we have conducted an in-depth study on the heat and mass transport from an oblate spheroid neutrally suspended in a simple shear flow. In the simulation, the temperature and mass concentration are modeled as a passive scalar released at the surface of the spheroid. The fluid dynamics induced by the interaction between the carrier fluid and the suspended spheroid, as well as the resultant scalar transport process, have been extensively investigated. A coupled transport mechanism comprising several components of the flow around the oblate spheroid has been identified. The effects of the Reynolds number and the aspect ratio of the spheroid on the flow characteristics and scalar transport rate are examined. The variation of the nondimensional scalar transport rate suggests that the effect of spheroid shape on scalar transfer rate can be decoupled from the effects of Peclet and Reynolds numbers, which facilitates the development of a correlation of scalar transfer rate for oblate spheroids based on the well-developed correlations for a sphere.
more »
« less
Advection-enhanced heat and mass transport from neutrally suspended droplet in simple shear flow
Advection-enhanced heat and mass transport from a single droplet neutrally suspended in a simple shear flow has been studied using high-fidelity numerical simulation. The capillary number ranges from 0.01 to 0.5, which encompasses the entire range of small deformation, large deformation, and breakup of the droplets. The Reynolds number is from 0.01 to 1, including regions of both weak and strong advection. The temperature and mass concentration are modeled as the concentration of a passive scalar released at the droplet surface. Two Schmidt numbers, 10 and 100, are considered, for which flow advection plays a role in the transport of passive scalar. For unbroken droplets, the interaction between the carrier fluid and the suspended droplet leads to several different flows around the droplet. The fluid motions together with scalar diffusion constitute a coupled transport mechanism for passive scalar. The dependence of scalar release rate on Reynolds and Peclet numbers can be roughly described by the correlation for a rigid sphere. For broken droplets, the basic flow features around the droplet during the process of elongation and breakup are similar to those of an unbroken droplet. The variation of the scalar release rate can be decomposed into several stages, corresponding to the process of droplet elongation and breakup. The variation of the scalar release rate exhibits a high correlation with the capillary, Reynolds, and Peclet numbers. This suggests that it is feasible to develop an empirical model that incorporates the effects of the number and size distributions of child droplets after breakup.
more »
« less
- Award ID(s):
- 2138740
- PAR ID:
- 10488591
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- Physics of Fluids
- Volume:
- 35
- Issue:
- 6
- ISSN:
- 1070-6631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Droplet breakup is a complex process involving interfacial instability and transport across a wide range of length and time scales. Fundamental studies of shock-droplet interaction provide valuable insight into the physical processes behind droplet breakup at high Weber and Reynolds numbers. Many high-speed applications such as liquid-fueled detonations and hypersonic hydrometeor impacts involve small droplets under high Weber numbers and/or unsteady conditions. The work presented here will explore deformation and hydrodynamics leading to breakup for small droplets (< 200μm) at high Weber numbers. An experimental campaign is presented whereby droplet deformation is measured at high temporal and spatial resolution. Small rapidly evaporating droplets (≈ 150μm) at Weber numbers in excess of 1000 are studied. High-speed (sub-microsecond image times) shadowgraphy provides measurement of the droplet deformation rate, acceleration, and breakup timing. DNS results are presented to further explore deformation rates for smaller droplets (≈ 5μm). Deformation rates are compared with existing models for both experimental and simulation cases. This ongoing work will provide additional data from which our understanding of complex droplet phenomena may be advanced and applied to physical systems.more » « less
-
We study the formation of oil droplets from an initially trapped large oil ganglion under surfactant flooding, using a microfluidic device consisting of a two-dimensional array of regularly spaced square posts. We observe that above a critical capillary number for oil mobilization, breakage of the ganglion results in the formation of either trapped patches spanning multiple pores or numerous mobile droplets that exit the device at a velocity comparable to the average flooding fluid velocity. These mobile droplets, however, are only observed when above a secondary capillary number threshold. The formation of these droplets is found to involve the simultaneous occurrence of three different passive droplet generation mechanisms where a droplet is formed as it is pulled by perpendicular fluid flow, as it is pulled by co-axial fluid flow, and or as it splits due to collision with a post. Our results show that oil breakthroughs only occur when the oil is in the form of mobile drop- lets, suggesting that droplet formation can be an important condition for the mobility of residual oil in porous media. Additionally, this post-array microfluidic device can be used for the production of monodisperse droplets whose size can be controlled by the spacing of the posts.more » « less
-
Understanding the peripheral capillary wave propagation during droplet impact is crucial for comprehending the physics of wetting onset and droplet fragmentation. Although Newtonian droplets have been extensively studied, we show how capillary waves deform non-Newtonian droplets in such a way that rheological features, such as the critical concentrations for the overlap (c*) and entangled polymer molecules (c**), may be directly obtained from the deformation history. Determining these critical concentrations is essential as they mark transitions in the rheological behavior of aqueous polymeric solutions, influencing viscosity, elasticity, and associated fluid dynamics. We have also compared capillary waves among Newtonian, shear-thinning, and Boger fluid droplets and found that although the fluid kinematics appear to be purely biaxial extensional flow, the infinite-shear properties of the droplets dominate the physics of capillary wave formation and propagation.more » « less
-
The correlation between helicity and turbulent transport in turbulent flows is probed with the use of direct numerical simulation and Lagrangian scalar tracking. Channel flow and plane Couette flow at friction Reynolds number 300 and Lagrangian data along the trajectories of fluid particles and passive particles with Schmidt numbers 0.7 and 6 are used. The goal is to identify characteristics of the flow that enhance turbulent transport from the wall, and how flow regions that exhibit these characteristics are related to helicity. The relationship between vorticity and relative helicity along particle trajectories is probed, and the relationship between the distribution of helicity conditioned on Reynolds stress quadrants is also evaluated. More importantly, the correlation between relative helicity density and the alignment of vorticity with velocity vectors and eigenvectors of the rate of strain tensor is presented. Separate computations for particles that disperse the farthest into the flow field and those that disperse the least are conducted to determine the flow structures that contribute to turbulent dispersion. The joint distribution of helicity and vertical velocity, and helicity and vertical vorticity depends on the location of particle release and the Schmidt number. The trajectories of particles that disperse the least are characterized by a correlation between the absolute value of the relative helicity density and the absolute value of the cosine between the vorticity vector and the eigenvectors of the rate of strain tensor, while the value of this correlation approaches zero for the particles that disperse the most.more » « less