skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantitative phase retrieval with low photon counts using an energy resolving quantum detector
X-ray phase contrast imaging (PCI) combined with phase retrieval has the potential to improve soft-material visibility and discrimination. This work examined the accuracy, image quality gains, and robustness of a spectral phase retrieval method proposed by our group. Spectroscopic PCI measurements of a physical phantom were obtained using state-of-the-art photon-counting detectors in combination with a polychromatic x-ray source. The phantom consisted of four poorly attenuating materials. Excellent accuracy was demonstrated in simultaneously retrieving the complete refractive properties (photoelectric absorption, attenuation, and phase) of these materials. Approximately 10 times higher SNR was achieved in retrieved images compared to the original PCI intensity image. These gains are also shown to be robust against increasing quantum noise, even for acquisition times as low as 1 s with a low-flux microfocus x-ray tube (average counts of 250 photons/pixels). We expect that this spectral phase retrieval method, adaptable to several PCI geometries, will allow significant dose reduction and improved material discrimination in clinical and industrial x-ray imaging applications.  more » « less
Award ID(s):
1652892
PAR ID:
10205283
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Journal of the Optical Society of America A
Volume:
38
Issue:
1
ISSN:
1084-7529; JOAOD6
Format(s):
Medium: X Size: Article No. 71
Size(s):
Article No. 71
Sponsoring Org:
National Science Foundation
More Like this
  1. Energy-resolving photon-counting detectors (PCDs) separate photons from a polychromatic X-ray source into a number of separate energy bins. This spectral information from PCDs would allow advancements in X-ray imaging, such as improving image contrast, quantitative imaging, and material identification and characterization. However, aspects like detector spectral distortions and scattered photons from the object can impede these advantages if left unaccounted for. Scattered X-ray photons act as noise in an image and reduce image contrast, thereby significantly hindering PCD utility. In this paper, we explore and outline several important characteristics of spectral X-ray scatter with examples of soft-material imaging (such as cancer imaging in mammography or explosives detection in airport security). Our results showed critical spectral signatures of scattered photons that depend on a few adjustable experimental factors. Additionally, energy bins over a large portion of the spectrum exhibit lower scatter-to-primary ratio in comparison to what would be expected when using a conventional energy-integrating detector. These important findings allow flexible choice of scatter-correction methods and energy-bin utilization when using PCDs. Our findings also propel the development of efficient spectral X-ray scatter correction methods for a wide range of PCD-based applications. 
    more » « less
  2. Spectroscopic image data has provided molecular discrimination for numerous fields including: remote sensing, food safety and biomedical imaging. Despite the various technologies for acquiring spectral data, there remains a trade-off when acquiring data. Typically, spectral imaging either requires long acquisition times to collect an image stack with high spectral specificity or acquisition times are shortened at the expense of fewer spectral bands or reduced spatial sampling. Hence, new spectral imaging microscope platforms are needed to help mitigate these limitations. Fluorescence excitation-scanning spectral imaging is one such new technology, which allows more of the emitted signal to be detected than comparable emission-scanning spectral imaging systems. Here, we have developed a new optical geometry that provides spectral illumination for use in excitation-scanning spectral imaging microscope systems. This was accomplished using a wavelength-specific LED array to acquire spectral image data. Feasibility of the LED-based spectral illuminator was evaluated through simulation and benchtop testing and assessment of imaging performance when integrated with a widefield fluorescence microscope. Ray tracing simulations (TracePro) were used to determine optimal optical component selection and geometry. Spectral imaging feasibility was evaluated using a series of 6-label fluorescent slides. The LED-based system response was compared to a previously tested thin-film tunable filter (TFTF)-based system. Spectral unmixing successfully discriminated all fluorescent components in spectral image data acquired from both the LED and TFTF systems. Therefore, the LED-based spectral illuminator provided spectral image data sets with comparable information content so as to allow identification of each fluorescent component. These results provide proof-of-principle demonstration of the ability to combine output from many discrete wavelength LED sources using a double-mirror (Cassegrain style) optical configuration that can be further modified to allow for high speed, video-rate spectral image acquisition. Real-time spectral fluorescence microscopy would allow monitoring of rapid cell signaling processes (i.e., Ca2+and other second messenger signaling) and has potential to be translated to clinical imaging platforms. 
    more » « less
  3. Abstract Acquiring detailed 3D images of samples is needed for conducting thorough investigations in a wide range of applications. Doing so using nondestructive methods such as X-ray computed tomography (X-ray CT) has resolution limitations. Destructive methods, which work based on consecutive delayering and imaging of the sample, face a tradeoff between throughput and resolution. Using focused ion beam (FIB) for delayering, although high precision, is low throughput. On the other hand, mechanical methods that can offer fast delayering, are low precision and may put the sample integrity at risk. Herein, we propose to use femtosecond laser ablation as a delayering method in combination with optical and confocal microscopy as the imaging technique for performing rapid 3D imaging. The use of confocal microscopy provides several advantages. First, it eliminates the 3D image distortion resulting from non-flat layers, caused by the difference in laser ablation rate of different materials. It further allows layer height variations to be maintained within a small range. Finally, it enables material characterization based on the processing of material ablation rate at different locations. The proposed method is applied on a printed circuit board (PCB), and the results are validated and compared with the X-ray CT image of the PCB part. 
    more » « less
  4. Single-shot two-dimensional (2D) phase retrieval (PR) can recover the phase shift distribution within an object from a single 2D x-ray phase contrast image (XPCI). Two competing XPCI imaging modalities often used for single-shot 2D PR to recover material properties critical for predictive performance capabilities are: speckle-based (SP-XPCI) and propagation-based (PB-XPCI) XPCI imaging. However, PR from SP-XPCI and PB-XPCI images are, respectively, limited to reconstructing accurately slowly and rapidly varying features due to noise and differences in their contrast mechanisms. Herein, we consider a combined speckle- and propagation-based XPCI (SPB-XPCI) image by introducing a mask to generate a reference pattern and imaging in the near-to-holographic regime to induce intensity modulations in the image. We develop a single-shot 2D PR method for SPB-XPCI images of pure phase objects without imposing restrictions such as object support constraints. It is compared against PR methods inspired by those developed for SP-XPCI and PB-XPCI on simulated and experimental images of a thin glass shell before and during shockwave compression. Reconstructed phase maps show improvements in quantitative scores of root-mean-square error and structural similarity index measure using our proposed method. 
    more » « less
  5. Inertial confinement fusion (ICF) holds increasing promise as a potential source of abundant, clean energy, but has been impeded by defects such as micro-voids in the ablator layer of the fuel capsules. It is critical to understand how these micro-voids interact with the laser-driven shock waves that compress the fuel pellet. At the Matter in Extreme Conditions (MEC) instrument at the Linac Coherent Light Source (LCLS), we utilized an x-ray pulse train with ns separation, an x-ray microscope, and an ultrafast x-ray imaging (UXI) detector to image shock wave interactions with micro-voids. To minimize the high- and low-frequency variations of the captured images, we incorporated principal component analysis (PCA) and image alignment for flat-field correction. After applying these techniques we generated phase and attenuation maps from a 2D hydrodynamic radiation code (xRAGE), which were used to simulate XPCI images that we qualitatively compare with experimental images, providing a one-to-one comparison for benchmarking material performance. Moreover, we implement a transport-of-intensity (TIE) based method to obtain the average projected mass density (areal density) of our experimental images, yielding insight into how defect-bearing ablator materials alter microstructural feature evolution, material compression, and shock wave propagation on ICF-relevant time scales. 
    more » « less