skip to main content


Title: Receiver Selectivity Limits on Bistatic Backscatter Range
Backscatter communication has been a popular choice in low-power/battery-free sensor nodes development. However, the effect of RF source to receiver distance on the operating range of this communication system has not been modeled accurately. In this paper, we propose a model for a bistatic backscatter system coverage map based on the receiver selectivity, receiver sensitivity, and geometric placement of the receiver, RF source, and the tag. To verify our proposed model and simulations, we perform an experiment using a low-cost commercial BLE receiver and a custom-designed BLE backscatter tag. We also show that the receiver selectivity might depend on the interference level, and present measurement results to signify how this dependence relates the system bit error rate to the RF excitation power.  more » « less
Award ID(s):
1823148
NSF-PAR ID:
10205333
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2020 IEEE International Conference on RFID (RFID)
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is a growing interest in wireless and batteryless implants for long-term sensing of organ movements, core pressure, glucose levels, or other biometrics [1]. Most research on such implants has focused on ultrasonic [2] and nearfield inductive [3-4] methods for power and communication, which require direct contact or close proximity (<1-5cm) to the human body. Recently, RF backscatter has emerged as a promising alternative due to its ability to communicate with far-field (> 10cm) wireless devices at ultra-low-power [5]. While multiple proposals have demonstrated far-field RF backscatter in deep tissues, these proposals have been limited to tag identification and could neither perform biometric sensing nor secure the wireless communication links, which is critical for ensuring the confidentiality of the sensed biometrics and for responding to commands only from authorized users [6]. Moreover, such far-field RF implants are susceptible to tissue variations which impact their resonance and hence their efficiency in RF backscatter and energy harvesting. 
    more » « less
  2. null (Ed.)
    The principle of backscattering has the potential to enable a full realization of the Internet of Things. This paradigm subsumes massively deployed things that have the capability to communicate directly with each other. Based on the types of excitation and receivers, we discriminate four types of backscattering systems: (i) Dedicated Exciter Active Receiver systems, (ii) Ambient Exciter Active Receiver systems, (iii) Dedicated Exciter Passive Receiver systems, and (iv) Ambient Exciter Passive Receiver systems. In this paper, we present an overview of bacskscattering systems with passive receivers which form the foundation for Backscattering Tag-to-Tag Networks (BTTNs). This is a technology that allows tiny batteryless RF tags attached to various objects to communicate directly with each other and to perform RF-based sensing of the communication link. We present an overview of recent innovations in hardware architectures for backscatter modulation, passive demodulation, and energy harvesting that overcome design challenges for passive tag-to-tag communication. We further describe the challenges in scaling up the architecture from a single link to a distributed network. We provide some examples of application scenarios enabled by BTTNs involving object-to-object communication and inter-object or human-object dynamic interactions. Finally, we discuss key challenges in present-day BTTN technology and future research directions. 
    more » « less
  3. The food and drug industry is facing the need to monitor the quality and safety of their products. This has made them turn to low-cost solutions that can enable smart sensing and tracking without adding much overhead. One such popular low-power solution is backscatter-based sensing and communication system. While it offers the promise of battery-less tags, it does so at the cost of a reduced communication range. In this work, we propose PACT - a scalable communication system that leverages the knowledge asymmetry in the network to improve the communication range of the tags. Borrowing from the backscatter principles, we design custom PACT Tags that are battery-less but use an active radio to extend the communication range beyond standard passive tags. They operate using the energy harvested from the PACT Source. A wide-band Reader is used to receive multiple Tag responses concurrently and upload them to a cloud server, enabling real-time monitoring and tracking at a longer range. We identify and address the challenges in the practical design of battery-less PACT Tags using an active radio and prototype them using off-the-shelf components. We show experimentally that our Tag consumes only 23μJ energy, which is harvested from an excitation Source that is up to 24 meters away from the Tag. We show that in outdoor deployments, the responses from an estimated 520 Tags can be received by a Reader concurrently while being 400 meters away from the Tags.

     
    more » « less
  4. Large scale networks of intelligent sensors that can function without any batteries will have enormous implications in applications that range from smart spaces to structural and environmental monitoring. RF tags present an amenable platform for sensor integration as the backscatter communication offers low energy cost of communication. Current RF tags either use extremely low-power sensors or perform tasks of tag localization and identification based on the strength of the backscatter signal. We present a technique for estimation of amplitude and phase of the tag-to-tag channel that can be performed with very limited computational and energy resources. This enables monitoring of the interactions between tagged objects and activities around tags, as well as assessment of a variety of engineering structures. Experimental results demonstrate high resolution in the amplitude and phase channel measurement at a distances ranging from 22 cm to 1.34 m. 
    more » « less
  5. Radio frequency identification (RFID) is a technology for automated identification of objects and people. RFID technology is expected to find extensive use in applications related to the Internet of Things, and in particular applications of Internet of Battlefield Things. Of particular interest are passive RFID tags due to a number of their salient advantages. Such tags, lacking energy sources of their own, use backscattering of the power of an RF source (a reader) to communicate. Recently, passive RFID tag-to-tag (T2T) communication has been demonstrated, via which tags can directly communicate with each other and share information. This opens the possibility of building a Network of Tags (NeTa), in which the passive tags communicate among themselves to perform data processing functions. Among possible applications of NeTa are monitoring services in hard-to-reach locations. As an essential step toward implementation of NeTa, we consider a novel multi-hop network architecture; in particular, with the proposed novel turbo backscattering operation, inter-tag distances can be significantly increased. Due to the interference among tags’ transmissions, one of the main technical challenges of implementing such the NeTa architecture is the routing protocol design. In this paper, we introduce a design of a routing protocol, which is based on a solution of a non-linear binary optimization problem. We study the performance of the proposed protocol and investigate impacts of several network factors, such as the tag density and the transmit power of the reader. 
    more » « less