skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Increasing the rate of the hydrogen evolution reaction in neutral water with protic buffer electrolytes
Electrocatalytic generation of H2is challenging in neutral pH water, where high catalytic currents for the hydrogen evolution reaction (HER) are particularly sensitive to the proton source and solution characteristics. A tris(hydroxymethyl)aminomethane (TRIS) solution at pH 7 with a [2Fe-2S]-metallopolymer electrocatalyst gave catalytic current densities around two orders of magnitude greater than either a more conventional sodium phosphate solution or a potassium chloride (KCl) electrolyte solution. For a planar polycrystalline Pt disk electrode, a TRIS solution at pH 7 increased the catalytic current densities for H2generation by 50 mA/cm2at current densities over 100 mA/cm2compared to a sodium phosphate solution. As a special feature of this study, TRIS is acting not only as the primary source of protons and the buffer of the pH, but the protonated TRIS ([TRIS-H]+) is also the sole cation of the electrolyte. A species that is simultaneously the proton source, buffer, and sole electrolyte is termed a protic buffer electrolyte (PBE). The structure–activity relationships of the TRIS PBE that increase the HER rate of the metallopolymer and platinum catalysts are discussed. These results suggest that appropriately designed PBEs can improve HER rates of any homogeneous or heterogeneous electrocatalyst system. General guidelines for selecting a PBE to improve the catalytic current density of HER systems are offered.  more » « less
Award ID(s):
1664745 1954641
PAR ID:
10205512
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
52
ISSN:
0027-8424
Page Range / eLocation ID:
p. 32947-32953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Buffers of known quality for the calibration of seawater pHTmeasurements are not widely or commercially available. Although there exist published compositions for the 0.04 mol kg‐H2O−1equimolar buffer 2‐amino‐2‐hydroxymethyl‐1,3‐propanediol (TRIS)‐TRIS · H+in synthetic seawater, there are no explicit procedures that describe preparing this buffer to achieve a particular pHTwith a known uncertainty. Such a procedure is described here which makes use of easily acquired laboratory equipment and techniques to produce a buffer with a pHTwithin 0.006 of the published pHTvalue originally assigned by DelValls and Dickson (1998), 8.094 at 25°C. Such a buffer will be suitable for the calibration of pH measurements expected to fulfil the “weather” uncertainty goal of the Global Ocean Acidification Observation Network of 0.02 in pHT, an uncertainty goal appropriate to “identify relative spatial patterns and short‐term variation.” 
    more » « less
  2. We report on the structural and electrochemical properties of a heterogeneous-homogeneous assembly composed of molecular cobaloxime catalysts immobilized onto graphite electrodes via an intervening polyvinylpyridine surface coating. When these modified electrodes are immersed in an organic solvent (propylene carbonate containing 0.1 M tetrabutylammonium perchlorate as a supporting electrolyte) or basic aqueous solutions (0.1 M NaOH), cyclic voltammetry measurements enable determination of the CoIII/IIpeak potentials and CoII/Imidpoint potentials of cobaloximes embedded within the polymeric architectures. Additionally, voltammetry measurements recorded using pH neutral aqueous solutions (0.1 M phosphate buffer) confirm the immobilized cobaloximes remain catalytically active for hydrogen production and operate at a turnover frequency of 1.6 s−1when polarized at –0.35 V vs the H+/H2equilibrium potential. Waveform analysis of redox features associated with immobilized cobaloximes indicates more repulsive interactions within the polymer film at pH neutral vs basic conditions, which is attributed to the increased fraction of pyridinium species at lower pH values. Our measurements also show the number of electrochemically active sites changes when measured in different solvent environments, indicating that electroactive loadings determined under non-catalytic solvent conditions are not necessarily representative of those under catalytic conditions and could thereby lead to misrepresentations of catalytic turnover frequencies. 
    more » « less
  3. Abstract To explore the structure–function relationships of cobalt complexes in the catalytic hydrogen evolution reaction (HER), we studied the substitution of a tertiary amine with a softer pyridine group and the inclusion of a conjugated bpy unit in a Co complex with a new pentadentate ligand, 6‐[6‐(1,1‐di‐pyridin‐2‐yl‐ethyl)‐pyridin‐2‐ylmethyl]‐[2,2′]bipyridinyl (Py3Me‐Bpy). These modifications resulted in significantly improved stability and activity in both electro‐ and photocatalytic HER in neutral water. [Co(Py3Me‐Bpy)(OH2)](PF6)2catalyzes the electrolytic HER at −1.3 V (vs. SHE) for 20 hours with a turnover number (TON) of 266 300, and photolytic HER for two days with a TON of 15 000 in pH 7 aqueous solutions. The softer ligand scaffold possibly provides increased stability towards the intermediate CoIspecies. DFT calculations demonstrate that HER occurs through a general electron transfer/proton transfer/electron transfer/proton transfer pathway, with H2released from the protonation of CoII−H species. 
    more » « less
  4. Abstract Electrocatalytic proton reduction to form dihydrogen (H2) is an effective way to store energy in the form of chemical bonds. In this study, we validate the applicability of a main‐group‐element‐based tin porphyrin complex as an effective molecular electrocatalyst for proton reduction. A PEGylated Sn porphyrin complex (SnPEGP) displayed high activity (−4.6 mA cm−2at −1.7 V vs. Fc/Fc+) and high selectivity (H2Faradaic efficiency of 94 % at −1.7 V vs. Fc/Fc+) in acetonitrile (MeCN) with trifluoroacetic acid (TFA) as the proton source. The maximum turnover frequency (TOFmax) for H2production was obtained as 1099 s−1. Spectroelectrochemical analysis, in conjunction with quantum chemical calculations, suggest that proton reduction occurs via an electron‐chemical‐electron‐chemical (ECEC) pathway. This study reveals that the tin porphyrin catalyst serves as a novel platform for investigating molecular electrocatalytic reactions and provides new mechanistic insights into proton reduction. 
    more » « less
  5. Abstract Conversion of CO2to energy‐rich chemicals using renewable energy is of much interest to close the anthropogenic carbon cycle. However, the current photoelectrochemical systems are still far from being practically feasible. Here the successful demonstration of a continuous, energy efficient, and scalable solar‐driven CO2reduction process based on earth‐abundant molybdenum disulfide (MoS2) catalyst, which works in synergy with an inexpensive hybrid electrolyte of choline chloride (a common food additive for livestock) and potassium hydroxide (KOH) is reported. The CO2saturated hybrid electrolyte utilized in this study also acts as a buffer solution (pH ≈ 7.6) to adjust pH during the reactions. This study reveals that this system can efficiently convert CO2to CO with solar‐to‐fuel and catalytic conversion efficiencies of 23% and 83%, respectively. Using density functional theory calculations, a new reaction mechanism in which the water molecules near the MoS2cathode act as proton donors to facilitate the CO2reduction process by MoS2catalyst is proposed. This demonstration of a continuous, cost‐effective, and energy efficient solar driven CO2conversion process is a key step toward the industrialization of this technology. 
    more » « less