Cost-effective production of low cobalt Li-ion battery (LIB) cathode materials is of great importance to the electric vehicle (EV) industry to achieve a zero-carbon economy. Among the various low cobalt cathodes, Ni-rich lithium nickel cobalt manganese oxide (NCM/NMC)-based layered materials are commonly used in EVs and are attracting more attention of the scientific community due to their high specific capacity and energy density. Various synthesis routes are already established to produce Ni-rich NCM cathodes with uniform particle size distribution and high tap density. Continuous production of highly pure Ni-rich cathode materials with uniformity in inter/intra-particle compositional distribution is critically required. On the other hand, cation mixing, particle cracking, and parasitic side reactions at higher voltage and temperature are some of the primary challenges of working with Ni-rich NCM cathodes. During the past five years, several advanced modification strategies such as coating, doping, core–shell, gradient structure and single crystal growth have been explored to improve the NCM cathode performance in terms of specific capacity, rate-capability and cycling stability. The scientific advancements in the field of Ni-rich NCM cathodes in terms of manufacturing processes, material challenges, modification techniques, and also the future research direction of LIB research are critically reviewed in this article. 
                        more » 
                        « less   
                    
                            
                            Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode
                        
                    
    
            High-energy nickel (Ni)–rich cathode will play a key role in advanced lithium (Li)–ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. Single-crystalline Ni-rich cathode has a great potential to address the challenges present in its polycrystalline counterpart by reducing phase boundaries and materials surfaces. However, synthesis of high-performance single-crystalline Ni-rich cathode is very challenging, notwithstanding a fundamental linkage between overpotential, microstructure, and electrochemical behaviors in single-crystalline Ni-rich cathodes. We observe reversible planar gliding and microcracking along the (003) plane in a single-crystalline Ni-rich cathode. The reversible formation of microstructure defects is correlated with the localized stresses induced by a concentration gradient of Li atoms in the lattice, providing clues to mitigate particle fracture from synthesis modifications. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10205514
- Publisher / Repository:
- American Association for the Advancement of Science (AAAS)
- Date Published:
- Journal Name:
- Science
- Volume:
- 370
- Issue:
- 6522
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- p. 1313-1317
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Nowadays, lithium-ion batteries are undoubtedly known as the most promising rechargeable batteries. However, these batteries face some big challenges, like not having enough energy and not lasting long enough, that should be addressed. Ternary Ni-rich Li[NixCoyMnz]O2 and Li[NixCoyAlz]O2 cathode materials stand as the ideal candidate for a cathode active material to achieve high capacity and energy density, low manufacturing cost, and high operating voltage. However, capacity gain from Ni enrichment is nullified by the concurrent fast capacity fading because of issues such as gas evolution, microcracks propagation and pulverization, phase transition, electrolyte decomposition, cation mixing, and dissolution of transition metals at high operating voltage, which hinders their commercialization. In order to tackle these problems, researchers conducted many strategies, including elemental doping, surface coating, and particle engineering. This review paper mainly talks about origins of problems and their mechanisms leading to electrochemical performance deterioration for Ni-rich cathode materials and modification approaches to address the problems.more » « less
- 
            Ni-rich Li(NixCoyMnz)O2 (x ≥ 0.8)-layered oxide materials are highly promising as cathode materials for high-energy-density lithium-ion batteries in electric and hybrid vehicles. However, their tendency to undergo side reactions with electrolytes and their structural instability during cyclic lithiation/delithiation impairs their electrochemical cycling performance, posing challenges for large-scale applications. This paper explores the application of an Al2O3 coating using an atomic layer deposition (ALD) system on Ni-enriched Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) cathode material. Characterization techniques, including X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, were used to assess the impact of alumina coating on the morphology and crystal structure of NCM811. The results confirmed that an ultrathin Al2O3 coating was achieved without altering the microstructure and lattice structure of NCM811. The alumina-coated NCM811 exhibited improved cycling stability and capacity retention in the voltage range of 2.8–4.5 V at a 1 C rate. Specifically, the capacity retention of the modified NCM811 was 5%, 9.11%, and 11.28% higher than the pristine material at operating voltages of 4.3, 4.4, and 4.5 V, respectively. This enhanced performance is attributed to reduced electrode–electrolyte interaction, leading to fewer side reactions and improved structural stability. Thus, NCM811@Al2O3 with this coating process emerges as a highly attractive candidate for high-capacity lithium-ion battery cathode materials.more » « less
- 
            Abstract Manganese‐rich layered oxide materials hold great potential as low‐cost and high‐capacity cathodes for Na‐ion batteries. However, they usually form a P2 phase and suffer from fast capacity fade. In this work, an O3 phase sodium cathode has been developed out of a Li and Mn‐rich layered material by leveraging the creation of transition metal (TM) and oxygen vacancies and the electrochemical exchange of Na and Li. The Mn‐rich layered cathode material remains primarily O3 phase during sodiation/desodiation and can have a full sodiation capacity of ca. 220 mAh g−1. It delivers ca. 160 mAh g−1specific capacity between 2–3.8 V with >86 % retention over 250 cycles. The TM and oxygen vacancies pre‐formed in the sodiated material enables a reversible migration of TMs from the TM layer to the tetrahedral sites in the Na layer upon de‐sodiation and sodiation. The migration creates metastable states, leading to increased kinetic barrier that prohibits a complete O3‐P3 phase transition.more » « less
- 
            null (Ed.)Ternary MAB phases (layered transition metal borides) have recently attracted interest due to their exfoliation potential toward MBenes (analogous to MXenes), which are predicted to have excellent Li-ion battery performance. We have achieved single-phase synthesis of two MAB phases with general composition Ni n+1 ZnB n ( n = 1, 2), the crystal structures of which contain zinc layers sandwiched between thin ( n = 1) and thick ( n = 2) Ni–B slabs. Highly stacked MAB sheets were confirmed by X-ray diffraction and high-resolution scanning electron microscopy for both materials. Exposing Ni n+1 ZnB n to diluted hydrochloric acid led to the creation of crystalline microporous structures for n = 1 and non-porous detached sheets for n = 2. Both morphologies transformed the inactive bulk materials into highly active Li-ion battery anodes with capacities of ∼90 mA h g −1 ( n = 1) and ∼70 mA h g −1 ( n = 2) at a 100 mA g −1 lithiation–delithiation rate. The XPS analysis and BET surface area measurements reveal that the increased surface area and the reversible redox reaction of oxidized nickel species are responsible for this drastic increase of the lithiation–delithiation capacity. This proof of concept opens new avenues for the development of porous MAB, MAB nanosheets, MBenes and their composites for metal-ion battery applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
